浣熊优化算法matlab代码
时间: 2023-09-15 12:22:51 浏览: 158
【仿生智能算法】基于浣熊优化算法的工程应用问题优化【matlab代码】
5星 · 资源好评率100%
浣熊优化算法(Raccoon Optimization Algorithm,ROA)是一种仿生优化算法,灵感来源于浣熊的觅食行为。下面是一个简单的浣熊优化算法的 MATLAB 代码示例:
```matlab
% 参数设置
maxIter = 100; % 迭代次数
popSize = 50; % 种群大小
dim = 2; % 优化问题的维度
lb = [-10, -10]; % 变量的下界
ub = [10, 10]; % 变量的上界
% 初始化种群
population = lb + (ub - lb) .* rand(popSize, dim);
% 计算适应度函数值
fitness = calculateFitness(population);
% 寻找最优解
[bestFitness, bestIndex] = min(fitness);
bestSolution = population(bestIndex, :);
% 迭代优化过程
for iter = 1:maxIter
% 更新种群
newPopulation = population;
for i = 1:popSize
% 随机选择两个个体
p1 = randi(popSize);
p2 = randi(popSize);
% 浣熊的觅食行为
if fitness(p1) < fitness(p2)
newPopulation(i, :) = population(i, :) + rand(1, dim) .* (population(p1, :) - population(i, :));
else
newPopulation(i, :) = population(i, :) + rand(1, dim) .* (population(i, :) - population(p2, :));
end
% 边界处理
newPopulation(i, :) = max(lb, min(ub, newPopulation(i, :)));
end
% 更新种群适应度
newFitness = calculateFitness(newPopulation);
% 更新最优解
[newBestFitness, newBestIndex] = min(newFitness);
if newBestFitness < bestFitness
bestFitness = newBestFitness;
bestSolution = newPopulation(newBestIndex, :);
end
% 更新种群和适应度
population = newPopulation;
fitness = newFitness;
end
% 适应度函数示例(需根据具体问题自行定义)
function fitness = calculateFitness(population)
% 计算种群中每个个体的适应度值
fitness = sum(population.^2, 2); % 示例:目标函数为多个变量平方和
end
```
该代码实现了浣熊优化算法的基本流程,包括种群初始化、适应度计算、迭代优化等步骤。你可以根据具体的优化问题,自行定义适应度函数和问题的维度。
阅读全文