YOLOV5目标检测网络结构
时间: 2024-01-08 09:20:34 浏览: 131
YOLOv5是一种单阶段目标检测算法,它在YOLOv4的基础上进行了改进,提高了速度和精度。YOLOv5的网络结构可以划分为四个通用模块:输入端、基准网络、Neck网络和Head输出端。
具体来说,YOLOv5的网络结构如下所示:
输入端:接收输入图像,并将其进行预处理,例如缩放、归一化等操作。
基准网络:基准网络是YOLOv5的主干网络,用于提取图像特征。YOLOv5使用CSPDarknet53作为基准网络,它是一种轻量级的Darknet网络结构。
Neck网络:Neck网络用于融合不同层级的特征图,以提高目标检测的精度。YOLOv5使用了PANet作为Neck网络,它通过上采样和下采样操作来融合不同层级的特征图。
Head输出端:Head输出端用于生成目标检测的结果。YOLOv5使用了YOLOv3的检测头部结构,包括多个卷积层和全连接层,最终输出目标的类别、位置和置信度等信息。
总结起来,YOLOv5的网络结构包括输入端、基准网络、Neck网络和Head输出端,通过这些模块的组合和优化,实现了高效准确的目标检测。
相关推荐















