def generate_next_generation(self): nexts = [] for i in range(round(elitism*population)): if len(nexts) < population: nexts.append(self.genomes[i].network_weights) for i in range(round(random_behaviour*population)): n = self.genomes[0].network_weights for k in range(len(n['weights'])): n['weights'][k] = random_clamped() if len(nexts) < population: nexts.append(n) max_n = 0 while True: for i in range(max_n): childs = self.breed(self.genomes[i], self.genomes[max_n], n_child if n_child > 0 else 1) for c in range(len(childs)): nexts.append(childs[c].network_weights) if len(nexts) >= population: return nexts max_n += 1 if max_n >= len(self.genomes)-1: max_n = 0

时间: 2024-02-10 07:18:01 浏览: 21
这段代码实现了生成下一代基因组的方法 generate_next_generation。在遗传算法中,每一代的基因组都需要通过选择、交叉和变异等操作生成下一代。具体来说,该方法实现了以下几个步骤: 1. 对于当前代的前 elitism*population 个基因组,直接将其神经网络权重添加到下一代中,以保留当前代中得分最高的基因组。 2. 对于当前代的前 random_behaviour*population 个基因组,采用随机权重的方式生成新的基因组,并添加到下一代中。 3. 对于当前代中的其他基因组,随机选择其中两个进行交叉和变异操作,生成 n_child 个新基因组,并添加到下一代中。 4. 如果下一代中的基因组数量达到了预期的数量 population,则返回生成的基因组列表;否则,继续进行第三步操作并不断尝试生成新的基因组,直到达到预期数量为止。 需要注意的是,该方法中的 elitism、random_behaviour、n_child 等参数均为遗传算法中的超参数,需要根据实际情况进行调整。
相关问题

class Generations(): def __init__(self): self.generations = [] def first_generation(self): out = [] for i in range(population): nn = NeuroNetwork() nn.init_neuro_network(network[0], network[1], network[2]) out.append(nn.get_weights()) self.generations.append(Generation()) return out def next_generation(self): if len(self.generations) == 0: return False gen = self.generations[-1].generate_next_generation() self.generations.append(Generation()) return gen def add_genome(self, genome): if len(self.generations) == 0: return False return self.generations[-1].add_genome(genome)

这段代码是一个遗传算法的实现,用于生成和演化神经网络的权重,以优化神经网络的性能。 具体来说,这个遗传算法包含了一个 Generation 类和一个 Generations 类。Generation 类表示一个代,包含了多个 Genome(基因组),每个 Genome 表示一个神经网络的权重。Generations 类则表示多个代,通过不断演化神经网络的权重,逐步提高神经网络的性能。 在 first_generation 方法中,通过随机初始化多个神经网络的权重,生成第一代的多个 Genome,返回这些 Genome 的权重作为第一代的神经网络。 在 next_generation 方法中,通过上一代的 Genome,使用遗传算法生成新的 Genome,作为下一代的神经网络权重。 在 add_genome 方法中,将新的 Genome 添加到当前代的 Generation 中。 通过不断迭代和演化,神经网络的性能逐渐提高,以适应特定的任务。

def generate_text(self, max_length): text = [] for i in range(max_length): print(self.topK_sampling(5))

这是一个生成文本的函数,它使用了 topK sampling 技术来生成文本。在每次循环中,它会调用 topK_sampling 函数,并将生成的文本添加到一个列表中。循环次数由 max_length 决定。具体实现可以参考下面的代码: ``` def generate_text(self, max_length): text = [] for i in range(max_length): generated = self.topK_sampling(5) text.append(generated) return " ".join(text) ``` 这个函数将生成的文本列表转换成一个字符串,并用空格将其连接起来,最后返回生成的文本。

相关推荐

def get_logic_pos(self,x,y): return (y-self.margin + self.cell_width//2)//self.cell_width, (x-self.margin + self.cell_width//2)//self.cell_width def judge_line(self,row,col,direct,chess_color): c = 1 for i in range(1,6): next_row, next_col = row + direct[0][0] * i, col + direct[0][1] * i if self.matrix[next_row][next_col] == chess_color: c +=1 else: break for i in range(1, 6): next_row, next_col = row + direct[1][0] * i, col + direct[1][1] * i if self.matrix[next_row][next_col] == chess_color: c +=1 else: break return c def judge(self,row,col,chess_color): for direct in [[(-1,0),(1,0)],[(0,-1),(0,1)],[(-1,1),(1,-1)],[(-1,-1),(1,1)]]: if self.judge_line(row,col,direct,chess_color) ==6: return chess_color if len(self.history) == self.n * self.n: return -1 return 0 def deal_with_judge(self, judge_result): if not judge_result: return if judge_result == 1: txt = 'Black Win' elif judge_result == 2: txt = 'White Win' elif judge_result == -1: txt = 'Draw Chess' self.gameboard.draw_box(txt) self.full_matrix(self.n) def put_chess(self,x,y): l = len(self.history) chess_color = (l+1) % 4 // 2+1 if chess_color == self.auto_color: row, col = self.AI.generate_next(self.history, 1 - len(self.history) % 2, chess_color) else: row,col = self.get_logic_pos(x,y) if self.matrix[row][col] == 0: self.history.append((row, col, chess_color)) self.matrix[row][col] = chess_color self.gameboard.drawchess(row, col, chess_color) self.gameboard.draw_now_chess(chess_color) self.deal_with_judge(self.judge(row,col,chess_color)) def full_matrix(self,n): for i in range(self.n): for j in range(self.n): self.matrix[i][j] = 1

import random from collections import deque # 定义状态类 class State: def __init__(self, location, direction, grid): self.location = location # 吸尘器位置坐标 self.direction = direction # 吸尘器方向 self.grid = grid # 环境状态矩阵 # 定义操作符 actions = ['UP', 'DOWN', 'LEFT', 'RIGHT'] movements = { 'UP': (-1, 0), 'DOWN': (1, 0), 'LEFT': (0, -1), 'RIGHT': (0, 1) } def move(state, action): # 根据操作进行移动 row, col = state.location dr, dc = movements[action] new_location = (row + dr, col + dc) new_direction = action new_grid = state.grid.copy() new_grid[row][col] = 0 return State(new_location, new_direction, new_grid) # 实现广度优先搜索算法 def bfs(initial_state): queue = deque([initial_state]) while queue: state = queue.popleft() if is_goal_state(state): return state for action in actions: new_state = move(state, action) queue.append(new_state) return None # 判断是否为目标状态 def is_goal_state(state): for row in state.grid: for cell in row: if cell != 0: return False return True # 构造初始状态 def generate_initial_state(): location = (random.randint(0, 2), random.randint(0, 2)) direction = random.choice(actions) grid = [[1 if random.random() < 0.2 else 0 for _ in range(3)] for _ in range(3)] return State(location, direction, grid) # 运行搜索算法 initial_state = generate_initial_state() goal_state = bfs(initial_state) # 评价性能 def calculate_path_cost(state): path_cost = 0 for row in state.grid: for cell in row: if cell != 0: path_cost += 1 return path_cost def calculate_search_cost(): search_cost = 0 queue = deque([initial_state]) while queue: state = queue.popleft() search_cost += 1 if is_goal_state(state): return search_cost for action in actions: new_state = move(state, action) queue.append(new_state) return search_cost path_cost = calculate_path_cost(goal_state) search_cost = calculate_search_cost() print("目标状态路径代价:", path_cost) print("搜索开销:", search_cost) 错误为:list index out of range 请改正

最新推荐

recommend-type

ansys maxwell

ansys maxwell
recommend-type

matlab基于不确定性可达性优化的自主鲁棒操作.zip

matlab基于不确定性可达性优化的自主鲁棒操作.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望