spark实现DBSCAN算法的代码怎么写
时间: 2024-05-15 22:16:10 浏览: 165
DBSCAN-distributed:DBSCAN集群的Scala + Spark实现
以下是使用Spark实现DBSCAN算法的示例代码:
```
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.rdd.RDD
import scala.collection.mutable.ArrayBuffer
object DBSCAN {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("DBSCAN")
val sc = new SparkContext(conf)
// 加载数据
val data = sc.textFile("path/to/data").map(line => {
val arr = line.split(",")
Vectors.dense(arr.map(_.toDouble))
})
// DBSCAN算法参数
val eps = 0.5
val minPts = 5
// 聚类
val clusters = dbscan(data, eps, minPts)
// 输出聚类结果
clusters.foreach(cluster => {
println("Cluster:")
cluster.foreach(println)
})
sc.stop()
}
def dbscan(data: RDD[Vector], eps: Double, minPts: Int): Array[Array[Vector]] = {
var clusterId = 0
val visited = ArrayBuffer.fill(data.count.toInt)(false)
val noise = ArrayBuffer[Vector]()
val clusters = ArrayBuffer[ArrayBuffer[Vector]]()
def isNeighbor(p: Vector, q: Vector): Boolean = {
Vectors.sqdist(p, q) <= eps * eps
}
def expandCluster(p: Vector, neighbors: ArrayBuffer[Int], cluster: ArrayBuffer[Vector]) {
visited(data.indexOf(p).toInt) = true
cluster += p
for (i <- neighbors) {
val q = data.collect()(i)
if (!visited(i)) {
visited(i) = true
val qNeighbors = getNeighbors(q, eps)
if (qNeighbors.length >= minPts) {
neighbors ++= qNeighbors
}
}
if (!clusters.exists(_.contains(q))) {
cluster += q
}
}
}
def getNeighbors(p: Vector, eps: Double): ArrayBuffer[Int] = {
val neighbors = ArrayBuffer[Int]()
data.collect().zipWithIndex.foreach { case (q, i) =>
if (isNeighbor(p, q)) {
neighbors += i
}
}
neighbors
}
data.collect().zipWithIndex.foreach { case (p, i) =>
if (!visited(i)) {
visited(i) = true
val neighbors = getNeighbors(p, eps)
if (neighbors.length < minPts) {
noise += p
} else {
clusterId += 1
val cluster = ArrayBuffer[Vector]()
cluster += p
expandCluster(p, neighbors, cluster)
clusters += cluster
}
}
}
if (noise.nonEmpty) {
clusters += noise
}
clusters.map(_.toArray).toArray
}
}
```
这个代码使用Spark实现了DBSCAN算法。通过加载数据,指定eps和minPts参数,可以聚类数据。然后,将聚类结果输出。
阅读全文