运行代码: import scipy.io import mne from mne.bem import make_watershed_bem import random import string # Load .mat files inner_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.inner_skull.mat') outer_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.outer_skull.mat') scalp = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.scalp.mat') print(inner_skull.keys()) # Assuming these .mat files contain triangulated surfaces, we will extract vertices and triangles # This might need adjustment based on the actual structure of your .mat files inner_skull_vertices = inner_skull['Vertices'] inner_skull_triangles = inner_skull['Faces'] outer_skull_vertices = outer_skull['Vertices'] outer_skull_triangles = outer_skull['Faces'] scalp_vertices = scalp['Vertices'] scalp_triangles = scalp['Faces'] subjects_dir = 'E:\MATLABproject\data\MRI\Visit1_040318' subject = ''.join(random.choices(string.ascii_uppercase + string.ascii_lowercase, k=8)) # Prepare surfaces for MNE # Prepare surfaces for MNE surfs = [ mne.make_bem_model(inner_skull_vertices, inner_skull_triangles, conductivity=[0.01], subjects_dir=subjects_dir), # brain mne.make_bem_model(outer_skull_vertices, outer_skull_triangles, conductivity=[0.016], subjects_dir=subjects_dir), # skull mne.make_bem_model(scalp_vertices, scalp_triangles, conductivity=[0.33], subjects_dir=subjects_dir), # skin ] # Create BEM solution model = make_watershed_bem(surfs) solution = mne.make_bem_solution(model) 时报错: Traceback (most recent call last): File "E:\pythonProject\MEG\头模型.py", line 30, in <module> mne.make_bem_model(inner_skull_vertices, inner_skull_triangles, conductivity=[0.01], subjects_dir=subjects_dir), # brain File "<decorator-gen-68>", line 12, in make_bem_model File "E:\anaconda\envs\pythonProject\lib\site-packages\mne\bem.py", line 712, in make_bem_model subject_dir = op.join(subjects_dir, subject) File "E:\anaconda\envs\pythonProject\lib\ntpath.py", line 117, in join genericpath._check_arg_types('join', path, *paths) File "E:\anaconda\envs\pythonProject\lib\genericpath.py", line 152, in _check_arg_types raise TypeError(f'{funcname}() argument must be str, bytes, or ' TypeError: join() argument must be str, bytes, or os.PathLike object, not 'ndarray' 进程已结束,退出代码1
时间: 2024-04-21 13:23:33 浏览: 136
Python错题本:from scipy.misc import imread 报错cannot import name imread 的解决方案
根据错误信息显示,`join()` 函数要求的参数必须是字符串、字节或 os.PathLike 对象,但你传递的是一个 ndarray 对象。
这个问题可能是因为 `subjects_dir` 参数的值不正确。请确保你在调用 `mne.make_bem_model` 函数时传递了正确的 `subjects_dir` 参数。
另外,你在代码中随机生成了一个 `subject` 变量,但它没有在 `mne.make_bem_model` 函数中使用。如果你希望将随机生成的 `subject` 作为参数传递给函数,你需要修改相应的代码。
例如:
```python
import os
# ...
subject = ''.join(random.choices(string.ascii_uppercase + string.ascii_lowercase, k=8))
subjects_dir = 'E:\MATLABproject\data\MRI\Visit1_040318'
# Prepare surfaces for MNE
surfs = [
mne.make_bem_model(inner_skull_vertices, inner_skull_triangles, conductivity=[0.01], subject=subject, subjects_dir=subjects_dir), # brain
mne.make_bem_model(outer_skull_vertices, outer_skull_triangles, conductivity=[0.016], subject=subject, subjects_dir=subjects_dir), # skull
mne.make_bem_model(scalp_vertices, scalp_triangles, conductivity=[0.33], subject=subject, subjects_dir=subjects_dir), # skin
]
# ...
```
在这个示例中,我假设你的 `subjects_dir` 是 `'E:\MATLABproject\data\MRI\Visit1_040318'`,并将随机生成的 `subject` 作为参数传递给 `mne.make_bem_model` 函数。请根据你的实际情况修改 `subjects_dir` 的值。
希望这次能解决你的问题!如果还有其他疑问,请随时提问。
阅读全文