基于LMMSE的半盲信道估计的公式推导

时间: 2024-04-06 18:14:22 浏览: 85
半盲信道估计是指在已知发送信号的前提下,通过接收信号估计信道参数,其中半盲指的是已知部分信息,未知部分需要估计。LMMSE是一种最小均方误差估计方法,可以用于半盲信道估计。 在半盲信道估计中,我们已知发送信号 $x(t)$,接收信号 $y(t)$,和部分信道信息 $h_0$,需要估计未知的信道参数 $h$。假设 $x(t)$ 和 $h$ 是平稳随机过程,$n(t)$ 是加性白噪声,且 $x(t)$ 和 $n(t)$ 是互相独立的高斯白噪声。 我们可以将接收信号表示为: $$ y(t) = x(t) * h + n(t) $$ 其中 $*$ 表示卷积运算。对于一个时刻 $t$,我们可以将接收信号表示为向量形式: $$ \boldsymbol{y}(t) = \boldsymbol{x} * \boldsymbol{h} + \boldsymbol{n}(t) $$ 其中 $\boldsymbol{y}(t)$、$\boldsymbol{x}$、$\boldsymbol{h}$、$\boldsymbol{n}(t)$ 都是列向量。 由于 $x(t)$ 和 $n(t)$ 是高斯白噪声,因此 $\boldsymbol{x}$ 和 $\boldsymbol{n}(t)$ 也是高斯分布的。我们可以计算 $\boldsymbol{y}(t)$、$\boldsymbol{x}$、$\boldsymbol{h}$ 之间的协方差矩阵: $$ \boldsymbol{R}_{yx}(t) = E[\boldsymbol{y}(t)\boldsymbol{x}^T] = \boldsymbol{h}E[\boldsymbol{x}\boldsymbol{x}^T] = \sigma_x^2 \boldsymbol{h} $$ $$ \boldsymbol{R}_{yy}(t) = E[\boldsymbol{y}(t)\boldsymbol{y}^T(t)] = \sigma_x^2 \boldsymbol{h} \boldsymbol{h}^T + \sigma_n^2 \boldsymbol{I} $$ 其中 $\sigma_x^2$ 和 $\sigma_n^2$ 分别是 $x(t)$ 和 $n(t)$ 的方差,$\boldsymbol{I}$ 是单位矩阵。我们可以将 $\boldsymbol{h}$ 表示为 $\boldsymbol{h} = [h_0, \boldsymbol{h}_1^T]^T$,其中 $h_0$ 已知,$\boldsymbol{h}_1$ 是未知参数向量。 我们可以将 $\boldsymbol{R}_{yy}(t)$ 表示为: $$ \boldsymbol{R}_{yy}(t) = \begin{bmatrix} \sigma_x^2 |h_0|^2 + \sigma_n^2 & \boldsymbol{R}_{yx}(t)^T \\ \boldsymbol{R}_{yx}(t) & \sigma_x^2 \boldsymbol{R}_{xx} \end{bmatrix} $$ 其中 $\boldsymbol{R}_{xx} = E[\boldsymbol{x}\boldsymbol{x}^T]$ 是 $x(t)$ 的自相关矩阵。 根据 LMMSE 方法,我们可以估计 $\boldsymbol{h}_1$ 的最小均方误差解: $$ \hat{\boldsymbol{h}}_1 = \boldsymbol{R}_{hh} \boldsymbol{R}_{yx}(t) \boldsymbol{R}_{xx}^{-1} \boldsymbol{y}(t) $$ 其中 $\boldsymbol{R}_{hh} = E[\boldsymbol{h}_1 \boldsymbol{h}_1^T]$ 是 $\boldsymbol{h}_1$ 的自相关矩阵。根据 $\boldsymbol{h} = [h_0, \boldsymbol{h}_1^T]^T$,我们可以得到最终的估计值: $$ \hat{\boldsymbol{h}} = [h_0, \hat{\boldsymbol{h}}_1^T]^T $$ 这就是基于 LMMSE 的半盲信道估计的公式推导。
阅读全文

相关推荐

zip
这是一份论文,有关信道估计的.里面介绍了LS,MMSE算法,并且有LMMSE和SVD作为对MMSE算法的改进.Y()=DFT(y(n))-N2y(nje (7) n=0,1,…,N-1 Y(k)也可以表示为 Y(k)=x(k)H(k)+/(k)+W() (8) 其中,H(k)是信道的频域响应,I(κ)是多普勒频移带来的载波间干扰(ICI),W(k)是高撕白噪声的傅立 叶变换。 3基于最小均方误差(MMSE)的信道估计算法 31LS信道估计算法简介 IS准则的目标是使(Y-1)(Y-)最小,在频域高斯独立子信道的假定之下,IS估计就可以 简单的表示成除法,得到IS准则的信道估计为: ,=x-Y (9) 最小二乘估计,只需要知道观测方程的观测矩阵X,对于待定的参数h,观测的噪声,以及观测样本Y 的其他统计特性,都不需要其他的先验信息,这就是最小二乘估计最大的优势,也是它得到广泛应用最大 的原因。 32MMSE信道估计算法 假设表示信道估计值,H表示实际值。估计误差为 =H-a (10) 均方误差(MSE)为 P=E{eP}=B{H-}=E(-H)(H-H)"} MMSE准则的目标是使均方误差E(-B)(-H)}最小,其中 E(-H)(-H)"}=E[(-1)(-)} H=gh (12) 其中Q为DF变换矩阵。得到MMSE的估计值为 Humse =QhmMse=QFmse"Y Mmse=rlle"Xxoo+RT(QX X@) (13) MMSE可以实现理想的信道估计,此算法的均方误差和信噪比成反比,如果此种算法需要的统计参数 都是理想的,那么估计出来的性能就会非常的理想。缺点就是此算法非常复杂。 与LS估计相比,MMSE估计算法在信噪比上有10-15dB的增益。可以看到,MMSE估计算法需要对 矩形求逆,当OFDM系统的子信道数目N增大时,矩阵的运算量也就会变得十分巨大。因此,MMSE算法 的最大的缺点就是计算量太大,实现起来对硬件的要求比较高。如何在估计性能的下降不多的前提下,对 MMSE估计算法做适当的简化,是一个关键的研究方向 33对MMSE算法的改进 首先可以简化(Xx)的计算,用E{xx}代替x。于是,有 HH(HH (14) SNR ·1373 这里 SNR=EX()o β=E{X()}·E(1/X(k)}2。 对于给定的信号星座图为定值,当子信道相关矩阵Rm与信噪比SNR已知时,对Rm1(Rm+l) SNR 只计算一次。但是矩阵的运算量还是比较大,由于子信道频响的频谱能量主要集中在低频部分,即主 要集中在前G阶,这里G为信道最大多径时延对应的样值个数。因此,设子信道的自相关矩阵可表 示为Rm=UAU的形式,这样可以显著降低MMSE的计算复杂度。这里U为酉矩阵, A=dlag(2,3,…,2)为由Rm的特征值构成的对角阵。由此可得 MMSE U H (15) 这里△n为 +(B/M1),k=1…,m构成的对角阵,为A的前m个特征值,通常可以取m与 循环前缀的长度一致,相应地矩阵U可化简为N×L阶矩阵 4算法性能分析 仿真基于图2所示道频结构的OFDM系统,信道设定为时变信道,包含了多径和由于终端移动产 生的多普勒频移。具体参数为:载波频率2GHz,采样频率6MHz,子载波数N=1024,无符号间干扰。 本仿真与文献[6中的频域LE加线性插值的信道估计性能比较,同时有一条理想估计曲线作为参考。如 图3、图4所示 10 理想模型 须域线性值估计的线性插值 时域最小均方误差 ●。。。●。。●。o。●c 温 o●。。o鲁。。。●o。 o。●0o。●。。o●。 e●。。●。。。。。。 域 o。●D。。● o● ●●。。。●。。。●。 ●o●o●。O。 10 频域 ENNo/dB 图2仿真系统导频结构 图360km/h时LE插值和MMSE算法性能比较 亞 想模型 域线性值估计的线性插倒 域最小均方误差 10 ENNo/dB 图4120km/h时LE插值和MMSE算法性能比较 ·1374· 以上两图显示,在高信噪比情况下,MMSE算法与LE插值算法性能近似,但在低信噪比时,本文提 出的MMSE改进算法较LE插值算法约有2~3dB的性能提升,更接近于理想曲线。 参考文献 [1] Meng-Han Hsieh, Che-Ho Wei. Channel estimation for OFDM systems based on comb-type pilot arangement in frequency selective fading channels. IEEE Transactions on Consumer Electronics, 1998, 44(1 ): 217-225 [2]Tufvesson F Maseng T Pilot Assisted Channel Estimation for OFDM in Mobile Cellular Systems. Proceedings of iEEE Vehicular Technology Conference, Vol 3. Phoenix(AZ USA), 1997. Piscataway (J, USA): IEEE, 1997. 1639-1643 3] Louis L. Scharf, Statistical Signal Processing, Addison-Wesley, 1991 [4] I. J. van de Beek, O. Edfors, M. Sandell,S. K. Wilson, and P 0. Borjesson, "OFDM channel estimation by singular value decomposition", Proc. Of 46IEEE Veh Tech Conf. Pp. 923-927, April1996 [5] Li Y G, Cimini L J, Sollenberger N R. Robus Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels [J]. IEEE Transactions on Communications, 1998, 46(7): 902-915 [6] Jae Kyoung Moon, Song In Choi. Performance of channel estimation methods for OFDM systems in a multipath fading channels IEEE Transactions on Consumer Electronics, 2000 46(1): 161-170 7]尹长川.多载波宽带无线通信技术.北京:北京邮电大学出版社,200.7 作者简介 王东,男,1978年生,陕西西安人,解放军西安通信学院讲师,在读硕士,主要研究方向为多载波通信 栾英姿,女,1970年生,江苏盐城人,西安电子科技大学副教授,博士,主要研究领域为宽带无线通信和多载波技术。 1375 一种基于MMSE的OFDM系统信道估计改进算法 旧 WANFANG DATA文献链接 作者: 王东,栾英姿 作者单位: 王东(西安电子科技大学,西安,710071;解放军西安通信学院,西安,710106),栾英姿(西安 电子科技大学,西安,710071) 本文链接http://d.g.wanfangdata.comcn/confereNce6442807.aspx

最新推荐

recommend-type

LMMSE算法信道均衡MATLAB仿真

该仿真平台使用MATLAB 2010a,采用的信道响应是已知的,使用LMMSE估计方法来估计发送信号。 一、问题背景 信道均衡是数字通信中的一个重要问题,LMMSE算法是一种常用的信道均衡方法。该算法可以在MATLAB平台上进行...
recommend-type

基于JAVA+SpringBoot+MySQL的校园台球厅人员与设备管理系统设计与实现.docx

基于JAVA+SpringBoot+MySQL的校园台球厅人员与设备管理系统设计与实现.docx
recommend-type

基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)

基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计),个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做大作业和毕业设计的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计),基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Mat个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做大作业和毕业设计的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
recommend-type

(完整数据)全国各省、地级市城镇登记失业率面板数据

失业率是指(一定时期满足全部就业条件的就业人口中仍有未工作的劳动力数字),旨在衡量闲置中的劳动产能,是反映一个国家或地区失业状况的主要指标。 失业数据的月份变动可适当反应经济发展。失业率与经济增长率具有反向的对应变动关系。2013年,中国首次向外公开了调查失业率的有关数据。 2023年2月28日,国家统计局发布《中华人民共和国2022年国民经济和社会发展统计公报》。初步核算,全年全国城镇调查失业率平均值为5.6%。年末全国城镇调查失业率为5.5% 数据整理统计2000年至2020年全国335个地级市城镇等级失业率,部分城市和部分年度有缺失。 数据名称:全国335个地级市城镇登记失业率 数据年份:2000-2020年
recommend-type

【java毕业设计】学习交流平台源码(ssm+mysql+说明文档+LW).zip

1、登陆、注册界面 3、可以查看发表文章并收藏,查看个人收藏 4. 查看其他人的提出的问题,也可以在线进行回答 4、聊天功能: 点击某个人给他留言,查看回复留言 5、评价系统(用户之间,可以进行评价,也能对其他用户进行评价,查看) 6. 学习资料下载(登录后下载) 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。