typedef struct _NODE_ { int data; struct _NODE_ *next; } NODE;

时间: 2023-06-16 13:03:15 浏览: 72
这是一个定义了链表节点的结构体,其中包含一个整型数据成员`data`和一个指向下一个节点的指针成员`next`。这里使用了自定义的结构体类型名`NODE`来代替`struct _NODE_`。可以通过定义一个指向`NODE`类型的指针来创建和操作链表。例如: ``` NODE* head = NULL; // 初始化链表头节点指针 head = (NODE*)malloc(sizeof(NODE)); // 创建头节点 head->data = 1; // 设置头节点数据 head->next = NULL; // 设置头节点指针为 NULL NODE* p = (NODE*)malloc(sizeof(NODE)); // 创建新节点 p->data = 2; // 设置新节点数据 p->next = NULL; // 设置新节点指针为 NULL head->next = p; // 将新节点连接到头节点后面 ``` 这样就创建了一个包含两个节点的链表,其中头节点的数据为1,指向下一个节点的指针指向第二个节点,第二个节点的数据为2,指向下一个节点的指针为 NULL。
相关问题

已知单链表的结点结构定义如下: typedef struct _NODE_ { int data; struct _NODE_ *next; } NODE; 说明:data 为数据域。next 为指针域,指示后继结点。 请编写函数,求带附加头结点的单链表全部数据元素的总和。

好的,这是一个简单的单链表求和问题。可以按照以下步骤实现: 1. 定义一个计数器变量 sum,初始化为 0。 2. 从单链表的头结点的后继节点开始,依次遍历单链表中的每个结点。 3. 对于每个遍历到的结点,将结点的元素值加到计数器 sum 中。 4. 遍历完单链表后,返回 sum 的值即可。 下面是具体的代码实现: ```c int Sum_LinkList(NODE *head) { int sum = 0; NODE *p = head->next; // 跳过头结点,从第一个结点开始遍历 while (p != NULL) { sum += p->data; // 将当前结点的元素值加到计数器中 p = p->next; // 指针后移,继续遍历下一个结点 } return sum; } ``` 需要注意的是,这里的 head 是带附加头结点的单链表的头指针,而不是第一个结点的指针。因此,在遍历单链表时,需要先将 p 指向第一个结点,也就是 p = head->next。同时,在将当前结点的元素值加到计数器中时,可以根据具体的数据类型进行修改。

C语言中 typedef struct Node{ int data; struct Node * next; }Node , * Linklist

在C语言中,可以使用typedef关键字来定义新的数据类型。在你提供的代码中,typedef struct Node{...} Node, * Linklist; 定义了一个名为Node的结构体类型和一个名为Linklist的指向Node结构体的指针类型。 具体来说,代码中定义了一个名为Node的结构体,该结构体包含两个成员:一个整型的data和一个指向Node结构体的指针next。这样定义的结构体可以用来表示一个链表的节点。 然后,通过typedef关键字,将这个结构体类型命名为Node,同时定义了一个名为Linklist的指向Node结构体的指针类型。这样,我们可以使用Node作为结构体类型的名称,使用Linklist作为指向Node结构体的指针类型的名称。 这样定义的目的是为了方便使用和理解代码,可以直接使用Node作为结构体类型的名称,而不需要每次都写struct Node。同时,使用Linklist作为指向Node结构体的指针类型的名称,可以更加清晰地表示指向链表的指针。 下面是一个简单的示例代码,演示如何使用这个定义的结构体类型和指针类型: ```c #include <stdio.h> typedef struct Node { int data; struct Node* next; } Node, * Linklist; int main() { Node node1, node2; Linklist list; node1.data = 1; node2.data = 2; node1.next = &node2; node2.next = NULL; list = &node1; printf("Data in node 1: %d\n", list->data); printf("Data in node 2: %d\n", list->next->data); return 0; } ``` 这段代码定义了两个Node类型的结构体变量node1和node2,以及一个Linklist类型的指针变量list。然后,通过给结构体成员赋值的方式构建了一个简单的链表,node1的next指针指向node2,node2的next指针为NULL。最后,将list指针指向node1,通过list指针可以访问链表中的节点数据。 输出结果为: Data in node 1: 1 Data in node 2: 2 这个示例代码展示了如何使用typedef定义的结构体类型和指针类型来创建链表节点,并通过指针访问链表中的数据。

相关推荐

最新推荐

recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

激光雷达专题研究:迈向高阶智能化关键,前瞻布局把握行业脉搏.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

安享智慧理财测试项目Mock服务代码

安享智慧理财测试项目Mock服务代码
recommend-type

课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip

【资源说明】 课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip课程设计 基于SparkMLlib的ALS算法的电影推荐系统源码+详细文档+全部数据齐全.zip 【备注】 1、该项目是高分毕业设计项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

华中科技大学电信专业 课程资料 作业 代码 实验报告-雷达与信息对抗-内含源码和说明书.zip

华中科技大学电信专业 课程资料 作业 代码 实验报告-雷达与信息对抗-内含源码和说明书.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。