数字全息显微 郜鹏 pdf

时间: 2023-05-10 18:54:26 浏览: 52
数字全息显微是一种新兴的显微技术,它结合了数字成像和全息成像技术,可以实现高分辨率、高灵敏度的样品成像,适用于许多领域,如生物医学、材料科学等。 数字全息显微的原理是利用激光束将样品照射,这些激光束会产生干涉图案,然后通过CCD相机进行记录。通过对这些干涉图案的重构,可以获得数据进行样品成像。相比传统的显微技术,数字全息显微具有更高的分辨率和更丰富的信息,因此适用于对细胞和微细结构的研究。 郜鹏的pdf《数字全息显微在生命科学中的应用与展望》是一篇综述性的文章,探讨了数字全息显微在生命科学领域的应用和未来展望。该文介绍了数字全息显微的发展历程和原理,并讨论了其在生命科学领域中的应用前景。例如,数字全息显微可以用于细胞成像、细胞追踪、细胞自动分辨等方面的研究。此外,数字全息显微还可以用于病毒学、免疫检测和药物筛选等领域。 然而,数字全息显微还存在许多技术难点,包括成像速度、成像深度和成像质量等方面的问题,这都需要进一步的研究和改进。因此,未来数字全息显微的研究将侧重于优化成像技术和算法,提高空间分辨率和时间分辨率,并将数字全息显微与其他成像技术相结合,以实现更全面、准确的数据采集和分析。 总之,数字全息显微是一种具有广泛应用前景的技术,对于科学研究和临床诊断都有着重要意义,随着技术的不断发展,相信数字全息显微在未来会有更加广泛的应用和发展。

最新推荐

工业软件行业研究:工信部发声制造业“可靠性”,京属国企软件采购释放正版化信号.pdf

计算机 软件开发 数据报告 研究报告 行业报告 行业分析

基于MATLAB的PCB板缺陷检测(倾斜,个数统计).zip

基于MATLAB的PCB板缺陷检测(倾斜,个数统计).zip

计算机行业2023年中期策略报告:跨越奇点,人工智能全景投资框架.pdf

计算机 软件开发 数据报告 研究报告 行业报告 行业分析

基于MATLAB的汉字识别(写字板,GUI界面).zip

基于MATLAB的汉字识别(写字板,GUI界面).zip

基于MATLAB的手写汉字识别[Bp+模板算法,过程丰富,GUI框架].zip

基于MATLAB的手写汉字识别[Bp+模板算法,过程丰富,GUI框架]

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督人脸特征传输与检索

1检索样式:无监督人脸特征传输与检索闽金虫1号mchong6@illinois.edu朱文生wschu@google.comAbhishek Kumar2abhishk@google.com大卫·福赛斯1daf@illinois.edu1伊利诺伊大学香槟分校2谷歌研究源源源参考输出参考输出参考输出查询检索到的图像(a) 眼睛/鼻子/嘴(b)毛发转移(c)姿势转移(d)面部特征检索图1:我们提出了一种无监督的方法来将局部面部外观从真实参考图像转移到真实源图像,例如,(a)眼睛、鼻子和嘴。与最先进的[10]相比,我们的方法能够实现照片般逼真的传输。(b) 头发和(c)姿势,并且可以根据不同的面部特征自然地扩展用于(d)语义检索摘要我们提出检索风格(RIS),一个无监督的框架,面部特征转移和检索的真实图像。最近的工作显示了通过利用StyleGAN潜在空间的解纠缠特性来转移局部面部特征的能力。RIS在以下方面改进了现有技术:1)引入

HALCON打散连通域

### 回答1: 要打散连通域,可以使用 HALCON 中的 `connection` 和 `disassemble_region` 函数。首先,使用 `connection` 函数将图像中的连通域连接起来,然后使用 `disassemble_region` 函数将连接后的连通域分离成单独的区域。下面是一个示例代码: ``` read_image(Image, 'example.png') Threshold := 128 Binary := (Image > Threshold) ConnectedRegions := connection(Binary) NumRegions :=

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

无监督身份再识别中的判别表示学习算法及领域适应技术的研究与应用

8526基于判别表示学习的无监督身份再识别Takashi Isobe1,2,Dong Li1,Lu Tian1,Weihua Chen3,Yi Shan1,ShengjinWang2*1 Xilinx Inc.,中国北京2清华大学3阿里巴巴集团{dongl,lutian,yishan}@xilinx.comjbj18@mails.tsinghua.edu.cnwgsg@tsinghua.edu.cnkugang. alibaba-inc.com摘要在这项工作中,我们解决的问题,无监督域适应的人重新ID注释可用于源域,但不为目标。以前的方法通常遵循两阶段优化管道,其中网络首先在源上进行预训练,然后使用通过特征聚类创建的伪标签在目标上进行微调。这种方法存在两个主要局限性。(1)标签噪声可能阻碍用于识别目标类别的区分特征的学习。(2)领域差距可能会阻碍知识从源到目标的转移。我们提出了三种技术方案来缓解(一)(b)第(1)款(c)第(1)款这些问题首先,我们提出了一个集群明智的对比学习算法(CCL)的特征学习和集群精炼的迭代优�