pandas中fpr,tpr,thresholds=roc_curve(y_test.values,y_pred)出现错误:multiclass format is not supported怎么解决
时间: 2024-02-03 14:13:36 浏览: 139
`roc_curve()` 函数只支持二分类问题的ROC曲线绘制,而你的数据集是多分类问题,因此出现了 `multiclass format is not supported` 的错误。
如果你想绘制多分类问题的ROC曲线,可以使用 `roc_auc_score()` 函数计算多类别的AUC值,但ROC曲线要单独绘制每个类别的二分类结果。
如果你是想绘制多分类问题的混淆矩阵和分类报告,可以使用 `confusion_matrix()` 和 `classification_report()` 函数。
以下是一个绘制多分类问题的混淆矩阵和分类报告的示例代码:
```python
from sklearn.metrics import confusion_matrix, classification_report
# 计算预测结果的混淆矩阵
cnf_matrix = confusion_matrix(y_test, y_pred)
# 绘制混淆矩阵图
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=np.unique(y), normalize=True,
title='Normalized confusion matrix')
# 输出分类报告
print(classification_report(y_test, y_pred))
```
相关问题
import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report, roc_curve, auc import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 计算并绘制ROC曲线和AUC值 fpr, tpr, thresholds = roc_curve(test_data[target], pred) roc_auc = auc(fpr, tpr) print('AUC:', roc_auc) plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)改进代码使用多元roc曲线
好的,你可以尝试使用以下改进代码,这里使用了 One-vs-Rest 策略来处理多分类任务,并使用 multiclass_roc_auc_score() 函数来计算多类分类的 ROC AUC:
```
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, multiclass_roc_auc_score
import seaborn as sns
import matplotlib.pyplot as plt
# 读取数据
data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx')
# 分割训练集和验证集
train_data = data.sample(frac=0.8, random_state=1)
test_data = data.drop(train_data.index)
# 定义特征变量和目标变量
features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态']
target = '交通风险'
# 训练随机森林模型
rf = RandomForestClassifier(n_estimators=100, random_state=1)
rf.fit(train_data[features], train_data[target])
# 在验证集上进行预测并计算精度、召回率和F1值等指标
pred = rf.predict(test_data[features])
accuracy = accuracy_score(test_data[target], pred)
confusion_mat = confusion_matrix(test_data[target], pred)
classification_rep = classification_report(test_data[target], pred)
print('Accuracy:', accuracy)
print('Confusion matrix:')
print(confusion_mat)
print('Classification report:')
print(classification_rep)
# 输出混淆矩阵图片
sns.heatmap(confusion_mat, annot=True, cmap="Blues")
plt.show()
# 计算并绘制多元ROC曲线和AUC值
y_test = pd.get_dummies(test_data[target])
y_pred = rf.predict_proba(test_data[features])
fpr = {}
tpr = {}
roc_auc = {}
for i in range(len(target_names)):
fpr[i], tpr[i], _ = roc_curve(y_test.iloc[:, i], y_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# 计算微平均AUC值
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.values.ravel(), y_pred.ravel())
roc_auc["micro"] = multiclass_roc_auc_score(y_test, y_pred, average="micro")
# 计算宏平均AUC值
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(len(target_names))]))
mean_tpr = np.zeros_like(all_fpr)
for i in range(len(target_names)):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
mean_tpr /= len(target_names)
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = multiclass_roc_auc_score(y_test, y_pred, average="macro")
# 绘制ROC曲线
plt.figure()
plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})'.format(roc_auc["micro"]), color='deeppink', linestyle=':')
plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})'.format(roc_auc["macro"]), color='navy', linestyle=':')
for i in range(len(target_names)):
plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})'.format(target_names[i], roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Multi-Class Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
# 读取新数据文件并预测结果
new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx')
new_pred = rf.predict(new_data[features])
new_data['交通风险预测结果'] = new_pred
new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)
```
注意:在这里,我们需要将目标变量进行 One-hot 编码,以便使用 multiclass_roc_auc_score() 函数计算多类分类的 ROC AUC。另外,你需要将 `target_names` 定义为目标变量的所有类别名称,以便在绘制 ROC 曲线时使用。
# 导入相关库 import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,roc_auc_score,roc_curve # 读取数据 df = pd.read_csv('C:/Users/E15/Desktop/机器学习作业/第一次作业/第一次作业/三个数据集/Titanic泰坦尼克号.csv') # 数据预处理 df = df.drop(["Name", "Ticket", "Cabin"], axis=1) # 删除无用特征 df = pd.get_dummies(df, columns=["Sex", "Embarked"]) # 将分类特征转换成独热编码 df = df.fillna(df.mean()) # 使用平均值填充缺失值 # 划分数据集 X = df.drop(["Survived"], axis=1) y = df["Survived"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 决策树 dtc = DecisionTreeClassifier(random_state=42) dtc.fit(X_train, y_train) y_pred_dtc = dtc.predict(X_test) # 剪枝决策树 pruned_dtc = DecisionTreeClassifier(random_state=42, ccp_alpha=0.015) pruned_dtc.fit(X_train, y_train) y_pred_pruned_dtc = pruned_dtc.predict(X_test) # 随机森林 rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train) y_pred_rfc = rfc.predict(X_test) # 计算评价指标 metrics = {"Accuracy": accuracy_score, "Precision": precision_score, "Recall": recall_score, "F1-Score": f1_score, "AUC": roc_auc_score} results = {} for key in metrics.keys(): if key == "AUC": results[key] = {"Decision Tree": roc_auc_score(y_test, y_pred_dtc), "Pruned Decision Tree": roc_auc_score(y_test, y_pred_pruned_dtc), "Random Forest": roc_auc_score(y_test, y_pred_rfc)} else: results[key] = {"Decision Tree": metrics[key](y_test, y_pred_dtc), "Pruned Decision Tree": metrics[key](y_test, y_pred_pruned_dtc), "Random Forest": metrics[key](y_test, y_pred_rfc)} # 打印评价指标的表格 results_df = pd.DataFrame(results) print(results_df)怎么打印auv图
要打印AUC图,可以使用`roc_curve`函数获取ROC曲线的参数,然后使用`matplotlib`库绘制曲线。具体代码如下:
```
# 计算ROC曲线参数
fpr_dtc, tpr_dtc, thresholds_dtc = roc_curve(y_test, y_pred_dtc)
fpr_pruned_dtc, tpr_pruned_dtc, thresholds_pruned_dtc = roc_curve(y_test, y_pred_pruned_dtc)
fpr_rfc, tpr_rfc, thresholds_rfc = roc_curve(y_test, y_pred_rfc)
# 绘制ROC曲线
plt.figure(figsize=(8, 6))
plt.plot(fpr_dtc, tpr_dtc, label='Decision Tree')
plt.plot(fpr_pruned_dtc, tpr_pruned_dtc, label='Pruned Decision Tree')
plt.plot(fpr_rfc, tpr_rfc, label='Random Forest')
plt.plot([0, 1], [0, 1], linestyle='--', color='grey')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend()
plt.show()
```
这段代码将会绘制一个ROC曲线,其中每个分类器都使用不同的颜色表示,同时包含一个虚线表示随机分类器的结果。注意,这段代码需要在之前的代码块中运行,以确保`fpr`,`tpr`和`y_pred`参数已经存在。
阅读全文