meanshift图像跟踪 matlab
时间: 2023-07-20 12:27:18 浏览: 160
以下是一个简单的meanshift图像跟踪的Matlab代码示例:
```matlab
% 读取第一帧图像
img = imread('frame1.jpg');
% 选择ROI
rect = round(getrect);
x = rect(1);
y = rect(2);
w = rect(3);
h = rect(4);
% 提取ROI的颜色直方图
roi = img(y:y+h-1, x:x+w-1, :);
roi_hsv = rgb2hsv(roi);
roi_hist = hsv_histogram(roi_hsv, 8, 2);
% 初始化跟踪器
prev_rect = rect;
prev_frame = img;
prev_roi_hist = roi_hist;
% 读取后续帧图像并进行跟踪
for i = 2:10
% 读取当前帧图像
curr_frame = imread(sprintf('frame%d.jpg', i));
% 进行meanshift跟踪
curr_rect = meanshift_track(prev_frame, prev_rect, prev_roi_hist);
% 在当前帧图像中绘制跟踪结果
curr_frame = insertShape(curr_frame, 'Rectangle', curr_rect, 'LineWidth', 2);
imshow(curr_frame);
% 更新跟踪器参数
prev_rect = curr_rect;
prev_frame = curr_frame;
end
% hsv_histogram函数用于计算颜色直方图
function hist = hsv_histogram(img, bins, range)
h = img(:, :, 1);
s = img(:, :, 2);
v = img(:, :, 3);
h_edges = linspace(0, range, bins+1);
s_edges = linspace(0, 1, bins+1);
v_edges = linspace(0, 1, bins+1);
h_idx = discretize(h, h_edges);
s_idx = discretize(s, s_edges);
v_idx = discretize(v, v_edges);
hist = accumarray([h_idx(:), s_idx(:), v_idx(:)], 1, [bins, bins, bins]);
hist = hist / sum(hist(:));
end
% meanshift_track函数用于进行meanshift跟踪
function rect = meanshift_track(img, rect, roi_hist)
% 转换为HSV颜色空间
hsv_image = rgb2hsv(img);
% 提取H通道
h = hsv_image(:, :, 1);
% 计算反向投影
back_proj = apply_back_projection(h, roi_hist);
% 进行meanshift迭代
[x, y, w, h] = rect;
roi = back_proj(y:y+h-1, x:x+w-1);
[cx, cy] = meanshift_iter(roi);
cx = cx + x - 1;
cy = cy + y - 1;
% 返回新的跟踪框
rect = [cx, cy, w, h];
end
% apply_back_projection函数用于计算反向投影
function back_proj = apply_back_projection(img, roi_hist)
% 计算颜色直方图
bins = size(roi_hist, 1);
hist = hsv_histogram(img, bins, 1);
% 计算反向投影
back_proj = apply_histogram_transform(hist, roi_hist);
end
% apply_histogram_transform函数用于应用直方图变换
function output = apply_histogram_transform(img_hist, ref_hist)
% 计算直方图比例因子
img_hist_scale = img_hist / sum(img_hist(:));
ref_hist_scale = ref_hist / sum(ref_hist(:));
factor = ref_hist_scale ./ img_hist_scale;
% 应用直方图变换
output = factor(img_hist);
end
% meanshift_iter函数用于进行meanshift迭代
function [cx, cy] = meanshift_iter(img)
% 设定停止条件
tolerance = 0.1;
max_iter = 100;
% 初始化中心点
[h, w] = size(img);
cx = floor(w / 2);
cy = floor(h / 2);
% 迭代直至收敛
for iter = 1:max_iter
% 计算直方图
bins = 16;
hist = hsv_histogram(img, bins, 1);
% 计算中心点
[x, y] = meshgrid(1:w, 1:h);
cx_new = sum(sum(x .* hist)) / sum(hist(:));
cy_new = sum(sum(y .* hist)) / sum(hist(:));
% 计算距离
dist = sqrt((cx_new - cx)^2 + (cy_new - cy)^2);
% 更新中心点
cx = cx_new;
cy = cy_new;
% 检查是否收敛
if dist < tolerance
break;
end
end
end
```
该代码首先读取第一帧图像并选择ROI,然后提取ROI的颜色直方图并初始化跟踪器。接着,它读取后续帧图像并调用meanshift_track函数进行meanshift跟踪。该函数计算反向投影并进行meanshift迭代以获取新的跟踪框。最后,它在当前帧图像中绘制跟踪结果,并更新跟踪器参数。
阅读全文