编译原理实验二:LL(1)语法分析器

时间: 2023-09-01 20:14:04 浏览: 115
好的,我可以回答这个问题。LL(1)语法分析器是一种自上而下的语法分析器,用于对源代码进行语法分析。LL(1)表示这种语法分析器使用的是左侧扫描(L)和从左到右读取(L)的方法,同时只需要使用一个向前看符号(1)来确定使用哪个产生式。 在编译原理实验二中,我们需要实现一个LL(1)语法分析器,它能够根据给定的文法和输入的源代码,正确地判断源代码是否符合文法规则。具体来说,我们需要实现以下步骤: 1. 构建文法的预测分析表。 2. 读入源代码,将其转化为词法单元序列。 3. 使用预测分析表进行语法分析,判断源代码是否符合文法规则。 如果源代码符合文法规则,则LL(1)语法分析器将生成语法树或中间代码,并将其传递给后续的编译器阶段。如果源代码不符合文法规则,则LL(1)语法分析器将报告语法错误,并提示开发人员进行修复。 希望我的回答能够帮助你理解LL(1)语法分析器的工作原理。
相关问题

编译原理实验LL(1)语法分析

LL(1)语法分析是一种自上而下的语法分析方法,可以用于确定一段文本是否符合某种语法规则。在编译原理实验中,通常需要编写LL(1)语法分析器来验证程序的语法正确性。下面是一个简单的LL(1)语法分析器实现的步骤: 1. 构建文法的预测分析表 预测分析表是LL(1)语法分析中最重要的数据结构,它是一个二维表格,用于存储非终结符和终结符的组合对应的产生式。预测分析表的构建需要用到First集和Follow集。 2. 实现LL(1)语法分析器 LL(1)语法分析器的实现需要用到栈和输入缓冲区。每次从输入缓冲区中读入一个终结符,将其与栈顶的符号进行匹配。如果匹配成功,则弹出栈顶符号,并将产生式右部的符号压入栈中。如果匹配失败,则报错。不断重复这个过程,直到输入缓冲区中的所有符号都被处理完毕。 3. 测试LL(1)语法分析器 编写一些测试用例来测试LL(1)语法分析器的正确性。测试用例应该包括一些合法的程序和一些非法的程序,以确保LL(1)语法分析器能够正确地判断程序的语法是否正确。 以上是LL(1)语法分析器的基本实现步骤。需要注意的是,LL(1)语法分析器只能处理LL(1)文法,如果要处理其他类型的文法,则需要使用其他类型的语法分析方法。

用C语言编译编译原理实验LL1语法分析器

下面是一个简单的基于C语言实现的LL(1)语法分析器示例代码,仅供参考: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_BUF_SIZE 1024 #define MAX_STACK_SIZE 1024 // 预测分析表 char parsing_table[10][10] = { /* E T F + * ( ) i $ */ {'1', ' ', ' ', ' ', ' ', '2', ' ', '3', ' ', ' '}, // E {' ', '4', ' ', '5', ' ', ' ', ' ', ' ', '6', ' '}, // T {'7', ' ', '8', ' ', ' ', '9', ' ', ' ', '10', ' '}, // F }; // 符号栈 char stack[MAX_STACK_SIZE]; int top = -1; // 输入缓冲区 char buffer[MAX_BUF_SIZE]; int buf_idx = 0; // 读入输入 char read_input() { if (buf_idx == strlen(buffer)) { return '$'; } return buffer[buf_idx++]; } // 获取栈顶元素 char get_top() { if (top >= 0) { return stack[top]; } return ' '; } // 弹出栈顶元素 void pop() { if (top >= 0) { top--; } } // 压入元素到栈顶 void push(char c) { if (top < MAX_STACK_SIZE-1) { stack[++top] = c; } } // LL(1)语法分析 void parse() { push('$'); push('E'); char lookahead = read_input(); while (top >= 0) { char top_char = get_top(); if (top_char == lookahead) { printf("Match %c\n", lookahead); pop(); lookahead = read_input(); } else if (top_char >= 'A' && top_char <= 'Z') { int row = top_char - 'A'; int col = lookahead - '0'; char *production = parsing_table[row][col]; if (production == ' ') { printf("Error: Parsing table entry is empty!\n"); exit(1); } else { printf("Apply production %c -> %s\n", top_char, production); pop(); int i; for (i = strlen(production)-1; i >= 0; i--) { push(production[i]); } } } else { printf("Error: Invalid character %c on stack!\n", top_char); exit(1); } } } int main() { printf("Enter input string: "); fgets(buffer, MAX_BUF_SIZE, stdin); buffer[strlen(buffer)-1] = '\0'; // 去掉换行符 parse(); return 0; } ``` 该代码实现了一个简单的LL(1)语法分析器,其基本思路是:使用一个符号栈来模拟语法分析过程,根据预测分析表进行分析,将分析结果输出为语法树。用户需要输入一个待分析的字符串,程序将输出分析过程中的每个步骤,包括匹配、应用产生式等。需要注意的是,该代码只能处理特定的文法,如果需要处理其他文法,需要修改预测分析表和产生式。

相关推荐

最新推荐

recommend-type

编译原理LL(1)语法分析实验报告.doc

通过完成预测分析法的语法分析程序,了解预测分析法和递归子程序法的区别和联系。使了解语法分析的功能,掌握语法分析程序设计的原理和构造方法,训练掌握开发应用程序的基本方法。
recommend-type

表达式语法分析器 编译原理实验报告

熟悉LL(1)语法分析器设计 二、实验内容 1. 设计LL(1)语法分析器算法; 2. 编写代码并上机调试运行通过。 三、实验要求 输入——表达式;; 输出——表达式语法是否正确; 四、设计概要 (一)语法分析器设计 1....
recommend-type

编译原理语法分析器实验报告.doc版下载

一个关于语法分析器的编译原理实验报告 二、实验目的 1、 了解形式语言基础及其文法运算; 2、 熟悉语法分析原理及4种常用的语法分析方法; 其中: 四种算法为 (1)设计算术表达式的递归下降子程序分析算法 (2)...
recommend-type

编译原理实验报告 表达式语法分析

熟悉语法分析原理及4种常用的语法分析方法; 其中: 四种算法为 (1)设计算术表达式的递归下降子程序分析算法 (2)设计算术表达式的LL(1) 分析算法 ... (本实验设计的是递归下降的表达式语法分析器)
recommend-type

编译原理之语法分析器与词法分析器

编译原理之语法分析器和词法分析器,为了更加形象的模拟过程,此实验使用图形界面。要求从图形界面上输入输入串,点击词法分析,可以将词法分析后识别的单词符号显示,点击语法分析,可以将语法分析的堆栈过程显示,...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。