深度图像和影像融合的python代码
时间: 2023-07-23 22:19:29 浏览: 113
使用深度学习框架(Pytorch) 的 红外和可见光图像融合_Jupyter_python代码_下载
5星 · 资源好评率100%
深度图像和影像融合可以使用多种方法,下面是一种基于拉普拉斯金字塔和融合权值的Python示例代码:
```python
import cv2
import numpy as np
# 读取深度图像和影像
depth_file = "depth.png"
image_file = "image.png"
depth_image = cv2.imread(depth_file)
image = cv2.imread(image_file)
# 将深度图像转换为灰度图像,并进行高斯滤波和归一化
depth_gray = cv2.cvtColor(depth_image, cv2.COLOR_BGR2GRAY)
depth_gray = cv2.GaussianBlur(depth_gray, (5, 5), 0)
depth_gray = cv2.normalize(depth_gray, None, 0, 255, cv2.NORM_MINMAX)
# 构建拉普拉斯金字塔
depth_pyramid = [depth_gray]
image_pyramid = [image]
for i in range(6):
depth_pyramid.append(cv2.pyrDown(depth_pyramid[-1]))
image_pyramid.append(cv2.pyrDown(image_pyramid[-1]))
# 从小尺度往大尺度进行融合
merged = image_pyramid[-1]
for i in range(5, -1, -1):
depth_up = cv2.pyrUp(depth_pyramid[i + 1])
depth_up = cv2.resize(depth_up, (depth_pyramid[i].shape[1], depth_pyramid[i].shape[0]))
depth_diff = np.abs(depth_pyramid[i] - depth_up)
weight = cv2.normalize(depth_diff, None, 0, 1, cv2.NORM_MINMAX)
merged = cv2.addWeighted(merged, weight, image_pyramid[i], 1 - weight, 0)
# 显示和保存融合结果
cv2.imshow("Merged Image", merged)
cv2.waitKey(0)
cv2.imwrite("merged.png", merged)
```
该代码首先读取深度图像和影像,并将深度图像转换为灰度图像。然后利用拉普拉斯金字塔对深度图像和影像进行降采样,并从小尺度往大尺度进行融合。在每个尺度上,根据深度图像的差异计算融合权值,并使用加权平均的方法将影像与深度图像融合。最后将融合结果显示和保存。
阅读全文