yolov8 训练后写脚本
时间: 2024-02-28 14:51:03 浏览: 129
voc数据转yolov5可以训练的数据脚本文件
以下是使用YOLOv8训练后编写脚本的示例[^1][^2]:
```python
import torch
from models import Darknet
from utils.datasets import LoadImagesAndLabels
from utils.general import check_img_size, non_max_suppression, scale_coords
from utils.torch_utils import select_device, time_synchronized
# 设置设备
device = select_device('0')
# 加载模型
model = Darknet('cfg/yolov3.cfg', img_size=416).to(device)
model.load_state_dict(torch.load('weights/yolov3.pt', map_location=device)['model'])
model.eval()
# 加载数据集
dataset = LoadImagesAndLabels('data/train.txt', img_size=416, batch_size=8)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=True, num_workers=4)
# 训练脚本
for epoch in range(100):
for batch_i, (imgs, targets, paths, shapes) in enumerate(dataloader):
imgs = imgs.to(device)
targets = targets.to(device)
# 前向传播
with torch.no_grad():
outputs = model(imgs)
# 后处理
outputs = non_max_suppression(outputs, conf_thres=0.5, iou_thres=0.5)
# 打印结果
for output in outputs:
if output is not None:
output[:, :4] = scale_coords(imgs.shape[2:], output[:, :4], shapes)
for x1, y1, x2, y2, conf, cls_conf, cls in output:
print(f'预测结果:{cls.item()}')
# 反向传播
loss = model(imgs, targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# 打印损失
print(f'Epoch {epoch}, Batch {batch_i}, Loss: {loss.item()}')
```
请注意,上述代码仅为示例,具体的脚本可能需要根据您的数据集和模型进行适当的修改。
阅读全文