ANP熵权法MATLAB
时间: 2024-02-04 21:10:00 浏览: 134
根据提供的引用内容,ANP熵权法是一种用于计算指标权重的方法。在MATLAB中,可以使用熵值法来实现ANP熵权法。以下是一个MATLAB实现的示例:
```matlab
x = []; % 输入数据
[n, m] = size(x);
% 计算每个指标的正向指标矩阵
R = zeros(n, m);
for i = 1:n
for j = 1:m
R(i, j) = x(i, j) / sum(x(:, j));
end
end
% 计算每个指标的权重
W = zeros(1, m);
for j = 1:m
p = R(:, j) / sum(R(:, j));
E = -sum(p .* log(p));
W(j) = (1 - E) / (m - E);
end
% 输出每个指标的权重
disp(W);
```
这段代码首先根据输入数据计算每个指标的正向指标矩阵R,然后根据熵值法计算每个指标的权重W。最后,输出每个指标的权重。
相关问题
ANP网络层次分析法matlab代码
### ANP 网络层次分析法 MATLAB 实现
在网络分析法(ANP)中,计算过程涉及构建网络模型、定义节点之间的关系以及通过迭代求解权重矩阵。下面是一个简单的MATLAB代码示例来展示如何实现ANP中的部分核心功能[^1]。
#### 构建判断矩阵并计算特征向量
```matlab
function w = calculate_weights(A)
% A is the pairwise comparison matrix
[~, n] = size(A);
% Normalize columns of A to sum up to 1
B = A ./ sum(A);
% Calculate average value per row (this gives us weights)
w = mean(B, 2);
% Ensure that all elements are positive and normalize them so they add up to one.
w = w / norm(w, 1);
end
```
此函数用于处理成对比较矩阵 `A` 并返回相应的权重向量 `w` 。这一步骤对于建立ANP模型至关重要,在实际应用中可能需要多次调用该函数以获得不同层面内的相对重要度评估结果。
#### 计算综合优先级向量
```matlab
function priority_vector = anp_priority_calculation(connection_matrix, weight_matrices)
% connection_matrix defines connections between clusters/nodes within network structure
% weight_matrices contains individual layer's weight vectors as its rows
num_clusters = length(weight_matrices(:,1));
% Initialize final priority vector with zeros
priority_vector = zeros(num_clusters, 1);
for i=1:num_clusters
connected_nodes = find(connection_matrix(i,:));
temp_sum = 0;
for j=connected_nodes'
temp_sum = temp_sum + weight_matrices(j)*connection_matrix(i,j);
end
priority_vector(i) = temp_sum;
end
% Normalization step ensures total sum equals unity
priority_vector = priority_vector./sum(priority_vector);
end
```
上述代码片段展示了基于给定连接矩阵和各层内部元素间的重要性评分来进行整体排序的过程。这里假设输入参数已经过适当预处理,可以直接应用于后续运算之中。
阅读全文
相关推荐















