给定一个最大容量为 m 的堆栈,将 n 个数字按 1, 2, 3, ..., n 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 m=5、n=7,则我们有可能得到{ 1, 2,

时间: 2023-05-31 08:20:47 浏览: 270
### 回答1: 当最大容量为m的堆栈,将n个数字按照1, 2, 3, ..., n的顺序入栈,允许按任何顺序出栈,则有哪些数字序列是不能得到的?例如给定m=5、n=7,则我们有可能得到{1,2,3,4,5,6,7}。但也有一些数字序列不能得到。 ### 回答2: 3, 4, 5, 6, 7 }和{ 2, 1, 4, 3, 6, 5, 7 }等数字序列。 首先,我们需要知道什么是栈。栈是一种后进先出(LIFO)的数据结构,即最后进入栈中的元素先被移除。 对于给定的堆栈容量m和数字数量n,我们可以用以下步骤来探讨哪些数字序列是不可能得到的: 1. 当栈为空时,我们可以将任意数字入栈,直到栈满为止。 2. 如果此时我们想要继续入栈数字,那么只能让已入栈的数字出栈。 3. 如果出栈的数字是按照1,2,3,...,k的顺序从栈顶开始连续的k个数字,那么我们可以将这k个数字一起出栈,然后继续入栈下一个数字。否则,这个数字序列是不可能得到的。 4. 如果我们已经将所有的数字都入栈,并按照规则出栈,那么说明这个数字序列是可能得到的。 例如,对于m=5,n=7的情况,我们可以按照以下过程进行操作: 1. 先将1~5入栈,此时栈内元素为5,4,3,2,1。 2. 将1,2出栈,此时栈内元素为5,4,3,2。 3. 将3,4出栈,此时栈内元素为5,2。 4. 将5出栈,此时栈为空。 5. 将6,7入栈,此时栈内元素为7,6。 6. 将6,7出栈,此时栈为空。 因此,数字序列{ 1, 2, 3, 4, 5, 6, 7 }是可能得到的。对于其他数字序列,只要根据上述步骤,判断其是否符合规则即可。 综上所述,我们可以通过分析栈的特点和按照规则操作栈来判断哪些数字序列是可能得到的。 ### 回答3: 3, 4, 5, 6, 7 },{ 2, 1, 4, 3, 6, 5, 7 }等序列,但是不能得到{ 3, 1, 2, 4, 5, 6, 7 },因为在出栈过程中,数字 3 后面还有 1 和 2,但是此时栈的容量已经不够,不能让它们出栈。 首先,需要明确一个概念,即 Stack 的容量指的是它可以储存的元素个数,而不是指已经储存了多少个元素。因此,在不清楚 Stack 是否已满时,无法确定哪些数字序列是不可能得到的。 假设有一个最大容量为 m 的 Stack,和 n 个数字需要按照顺序入栈,并且可以按任何顺序出栈。设当前还剩下 k 个数字没有入栈,则对于每个数字,有两种选择:一种是将其入栈,另一种是从栈中弹出。 因此,对于任意一个数 i,如果在入栈时它的位置已经超过了 m,且栈中存在比 i 更小的数 j,则无法按照给定顺序将 i 出栈,因为在 j 出栈前必须先让 i 出栈,而此时栈的容量已经不够。 例如,当 m=5,n=7 时,对于数字序列 3 1 2 4 5 6 7,当 3 入栈时,栈已经满了,无法入栈后面的数字 1 和 2;而当 2 入栈时,栈中已经存在数字 1,无法让 1 出栈,因此无法按照给定的顺序将数字序列 3 1 2 4 5 6 7 出栈。 因此,一个数字序列无法按照给定顺序出栈的条件为:存在某个数 i,满足 i 的入栈位置已经超过了 m,且存在一个比 i 更小的数 j,使得 j 在 i 出栈之前必须先出栈。 综上所述,只有当 m < n 且存在两个数 i 和 j 满足上述条件时,对应的数字序列才无法按照给定顺序出栈。反之,所有的数字序列都可以按照任意顺序出栈。
阅读全文

相关推荐

最新推荐

recommend-type

Python3 xml.etree.ElementTree支持的XPath语法详解

Python3的xml.etree.ElementTree模块提供了一个XML处理接口,其中包含了对XPath语言的有限支持。XPath是一种在XML文档中查找信息的语言,它允许我们基于元素的名称、属性、文本内容以及它们之间的关系来定位XML节点...
recommend-type

有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数.docx

标题中的问题旨在探究如何使用1、2、3、4这四个数字来组成没有重复数字的三位数,并且描述中提供了算法思路,即通过三个嵌套的for循环配合一个if语句来实现。在这个Java程序中,`EleventhNumberRange` 类用于解决这...
recommend-type

python分割一个文本为多个文本的方法

在Python编程中,分割一个文本为多个文本是一个常见的任务,特别是在处理大量数据或者文档时。以下将详细讨论如何实现这个功能,并结合提供的代码片段进行解释。 首先,我们要明确Python中处理文本的基本操作,如...
recommend-type

浅析python3中的os.path.dirname(__file__)的使用

在Python 3中,`os.path.dirname(__file__)` 是一个常见的编程模式,用于获取当前执行脚本所在的目录。这个组合使用了两个重要的模块函数:`os.path.dirname()` 和 `__file__`。 首先,`os.path` 模块是Python标准...
recommend-type

判断一个无向图是否为连通图的方法

判断一个无向图是否为连通图是一个常见的问题,尤其在图论和算法设计中。解决这个问题的方法通常基于深度优先搜索(DFS)或广度优先搜索(BFS)。这两种方法都是遍历图中的所有节点,检查是否存在从任意一个节点出发可以...
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。