matlab反步法代码
时间: 2024-03-13 18:41:38 浏览: 65
反步法(Backpropagation)是一种常用的神经网络训练算法,用于计算神经网络中各个参数的梯度,并通过梯度下降法来更新参数。下面是一个简单的MATLAB代码示例,用于实现反步法算法:
```matlab
% 定义神经网络结构和参数
inputSize = 2; % 输入层大小
hiddenSize = 3; % 隐含层大小
outputSize = 1; % 输出层大小
learningRate = 0.1; % 学习率
% 初始化权重和偏置
W1 = randn(hiddenSize, inputSize); % 输入层到隐含层的权重
b1 = randn(hiddenSize, 1); % 隐含层的偏置
W2 = randn(outputSize, hiddenSize); % 隐含层到输出层的权重
b2 = randn(outputSize, 1); % 输出层的偏置
% 定义反步法算法
for epoch = 1:numEpochs
% 前向传播
z1 = W1 * input + b1;
a1 = sigmoid(z1);
z2 = W2 * a1 + b2;
output = sigmoid(z2);
% 计算损失函数的梯度
delta2 = (output - target) .* sigmoidGradient(z2);
delta1 = (W2' * delta2) .* sigmoidGradient(z1);
% 更新权重和偏置
W2 = W2 - learningRate * delta2 * a1';
b2 = b2 - learningRate * delta2;
W1 = W1 - learningRate * delta1 * input';
b1 = b1 - learningRate * delta1;
end
```
上述代码中,我们首先定义了神经网络的结构和参数,包括输入层大小、隐含层大小、输出层大小和学习率。然后,我们初始化了权重和偏置。接下来,使用反步法算法进行训练,其中包括前向传播和反向传播两个步骤。在前向传播中,我们计算了神经网络的输出。在反向传播中,我们计算了损失函数对各个参数的梯度,并使用梯度下降法来更新参数。
阅读全文