pytorch如何快速创建一个FPN
时间: 2023-10-27 20:20:45 浏览: 102
在 PyTorch 中,可以通过继承 `nn.Module` 类来创建自定义的 FPN 模型。下面是一个快速创建 FPN 的示例代码:
```python
import torch.nn as nn
import torch.nn.functional as F
class FPN(nn.Module):
def __init__(self, in_channels, out_channels):
super(FPN, self).__init__()
# Bottom-up layers
self.bottom_up = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU()
)
# Top-down layers
self.top_down = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1),
nn.ConvTranspose2d(256, 256, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(256, 128, kernel_size=1),
nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(128, 64, kernel_size=1),
nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU()
)
# Lateral layers
self.lateral = nn.ModuleList([
nn.Conv2d(512, 256, kernel_size=1),
nn.Conv2d(256, 128, kernel_size=1),
nn.Conv2d(128, 64, kernel_size=1)
])
# Output layers
self.output_convs = nn.ModuleList([
nn.Conv2d(256, out_channels, kernel_size=3, padding=1),
nn.Conv2d(128, out_channels, kernel_size=3, padding=1),
nn.Conv2d(64, out_channels, kernel_size=3, padding=1)
])
def forward(self, x):
# Bottom-up
c1 = self.bottom_up[0:2](x)
c2 = self.bottom_up[2:4](c1)
c3 = self.bottom_up[4:6](c2)
c4 = self.bottom_up[6:8](c3)
# Top-down
p4 = self.top_down[0](c4)
p3 = self.top_down[1](p4) + self.lateral[0](c3)
p2 = self.top_down[2](p3) + self.lateral[1](c2)
p1 = self.lateral[2](c1)
# Output
o1 = self.output_convs[0](p4)
o2 = self.output_convs[1](p3)
o3 = self.output_convs[2](p2)
return o1, o2, o3
```
以上代码中,`in_channels` 是输入图像的通道数,`out_channels` 是输出特征图的通道数,可以根据实际需求进行调整。该 FPN 模型由 Bottom-up 层、Top-down 层、Lateral 层和 Output 层组成,其中 Bottom-up 层用来提取底层特征,Top-down 层用来生成高层特征,Lateral 层用来进行特征融合,Output 层用来生成最终的特征图。在 forward 方法中,首先通过 Bottom-up 层提取底层特征,然后通过 Top-down 层生成高层特征,通过 Lateral 层进行特征融合,最后通过 Output 层生成最终的特征图。
阅读全文