cnn卷积神经网络matlab代码
时间: 2023-09-09 22:07:18 浏览: 82
CNN卷积神经网络MATLAB代码
3星 · 编辑精心推荐
以下是一个简单的CNN卷积神经网络的MATLAB代码示例:
```matlab
% 加载数据和标签
load mnist_uint8;
train_x = double(train_x) / 255;
test_x = double(test_x) / 255;
train_y = double(train_y);
test_y = double(test_y);
% 设置网络参数
input_layer_size = 28 * 28; % 输入层大小
hidden_layer_size = 50; % 隐藏层大小
output_layer_size = 10; % 输出层大小
filter_size = 5; % 卷积核大小
num_filters = 20; % 卷积核数量
% 初始化卷积核和偏置项
conv_filter = randn(filter_size, filter_size, num_filters);
conv_bias = zeros(num_filters, 1);
% 初始化隐藏层权重和偏置项
hidden_weights = randn(hidden_layer_size, num_filters * (input_layer_size - filter_size + 1)^2) / sqrt(num_filters * (input_layer_size - filter_size + 1)^2);
hidden_bias = zeros(hidden_layer_size, 1);
% 初始化输出层权重和偏置项
output_weights = randn(output_layer_size, hidden_layer_size) / sqrt(hidden_layer_size);
output_bias = zeros(output_layer_size, 1);
% 训练网络
num_epochs = 10;
learning_rate = 0.1;
batch_size = 100;
for epoch = 1:num_epochs
% 随机打乱训练数据顺序
shuffle_index = randperm(size(train_x, 1));
train_x = train_x(shuffle_index, :);
train_y = train_y(shuffle_index, :);
% 每个batch进行一次前向传播和反向传播
for batch = 1:(size(train_x, 1) / batch_size)
% 获取一个batch的数据和标签
batch_start = (batch - 1) * batch_size + 1;
batch_end = batch * batch_size;
batch_x = train_x(batch_start:batch_end, :);
batch_y = train_y(batch_start:batch_end, :);
% 前向传播
conv_out = conv_layer(batch_x, conv_filter, conv_bias);
conv_out_relu = relu_layer(conv_out);
hidden_out = hidden_layer(conv_out_relu, hidden_weights, hidden_bias);
hidden_out_relu = relu_layer(hidden_out);
output_out = output_layer(hidden_out_relu, output_weights, output_bias);
% 计算损失和准确率
loss = cross_entropy_loss(output_out, batch_y);
accuracy = accuracy_metric(output_out, batch_y);
% 反向传播
output_error = cross_entropy_loss_derivative(output_out, batch_y);
hidden_error = hidden_layer_derivative(hidden_out_relu, output_weights, output_error);
conv_error = conv_layer_derivative(batch_x, conv_filter, conv_bias, conv_out, hidden_error);
% 更新卷积核和偏置项
conv_filter = conv_filter - learning_rate * conv_error.filter_gradient;
conv_bias = conv_bias - learning_rate * conv_error.bias_gradient;
% 更新隐藏层权重和偏置项
hidden_weights = hidden_weights - learning_rate * hidden_error.weights_gradient;
hidden_bias = hidden_bias - learning_rate * hidden_error.bias_gradient;
% 更新输出层权重和偏置项
output_weights = output_weights - learning_rate * output_error.weights_gradient;
output_bias = output_bias - learning_rate * output_error.bias_gradient;
end
% 在测试集上测试准确率
conv_out = conv_layer(test_x, conv_filter, conv_bias);
conv_out_relu = relu_layer(conv_out);
hidden_out = hidden_layer(conv_out_relu, hidden_weights, hidden_bias);
hidden_out_relu = relu_layer(hidden_out);
output_out = output_layer(hidden_out_relu, output_weights, output_bias);
accuracy = accuracy_metric(output_out, test_y);
fprintf('Epoch %d: Test accuracy = %f\n', epoch, accuracy);
end
```
其中,`conv_layer`、`relu_layer`、`hidden_layer`、`output_layer`、`cross_entropy_loss`、`accuracy_metric`、`cross_entropy_loss_derivative`、`hidden_layer_derivative`、`conv_layer_derivative` 都是各自层的函数,需要自行实现。
阅读全文