基于DQN的多智能体强化学习python代码
时间: 2023-05-27 12:03:43 浏览: 264
这里提供一个基于DQN的多智能体强化学习python代码示例:
```python
import numpy as np
import random
import tensorflow as tf
from collections import deque
# 定义DQN类
class DQN(object):
# 初始化DQN网络
def __init__(self, env):
self.state_size = env.observation_space.shape[0]
self.action_size = env.action_space.n
self.memory = deque(maxlen=2000)
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
# DQN网络的模型结构
def _build_model(self):
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(24, input_dim=self.state_size, activation='relu'),
tf.keras.layers.Dense(24, activation='relu'),
tf.keras.layers.Dense(self.action_size, activation='linear')
])
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=self.learning_rate))
return model
# 记录记忆
def remember(self, state, action, reward, next_state, done):
self.memory.append([state, action, reward, next_state, done])
# 通过DQN网络选择一个动作
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
# 训练DQN网络
def replay(self, batch_size):
if len(self.memory) < batch_size:
return
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 加载保存的DQN网络权重
def load(self, name):
self.model.load_weights(name)
# 保存DQN网络权重
def save(self, name):
self.model.save_weights(name)
# 定义多智能体强化学习类
class MARL(object):
# 初始化多智能体强化学习
def __init__(self, env, n_agent):
self.env = env
self.n_agent = n_agent
self.agents = [DQN(env) for _ in range(n_agent)]
self.batch_size = 32
# 进行多智能体强化学习
def train(self, max_episode, max_step):
scores = []
for e in range(max_episode):
states = self.env.reset()
states = np.reshape(states, [1, self.env.observation_space.shape[0] * self.n_agent])
score = 0
for t in range(max_step):
actions = []
for i in range(self.n_agent):
action = self.agents[i].act(states)
actions.append(action)
next_states, rewards, done, _ = self.env.step(actions)
next_states = np.reshape(next_states, [1, self.env.observation_space.shape[0] * self.n_agent])
for i in range(self.n_agent):
self.agents[i].remember(states, actions[i], rewards[i], next_states, done)
self.agents[i].replay(self.batch_size)
states = next_states
score += np.sum(rewards)
if done:
break
scores.append(score)
print("episode: {}/{}, score: {}".format(e, max_episode, score))
return scores
```
该代码仅为示例代码,仅供参考。实际中需要根据具体问题进行适当调整。
阅读全文