首先将干涉条纹图像转化为灰度图像,并利用傅里叶变换选取干涉条纹频率以排除噪声干扰,获得幅值在-Π至Π间周期变化的二维缠绕相位分布,之后利用邻近分支切割算法对相位进行解绕的matlab程序
时间: 2024-03-09 08:47:53 浏览: 79
用于条纹图案分析的加窗傅里叶变换:处理从光学干涉测量、条纹投影、SAR、MRI等获得的条纹图案。-matlab开发
以下是一个基于Matlab的干涉条纹图像处理程序,包括了图像灰度化、傅里叶变换、频率选取、二维缠绕相位分布的计算以及邻近分支切割算法的实现:
```matlab
% Load image
img = imread('interferogram.jpg');
% Convert image to grayscale
img_gray = rgb2gray(img);
% Display grayscale image
figure;
imshow(img_gray);
% Apply Fourier transform
ft = fft2(img_gray);
% Shift the Fourier transform to center the frequency components
ft_shifted = fftshift(ft);
% Calculate the magnitude spectrum
mag_spectrum = abs(ft_shifted);
% Display the magnitude spectrum
figure;
imshow(log(1+mag_spectrum),[]);
% Select the interference fringe frequency
[nrows, ncols] = size(img_gray);
fringe_freq = 10;
filter = zeros(nrows, ncols);
filter(nrows/2-fringe_freq:nrows/2+fringe_freq,ncols/2-fringe_freq:ncols/2+fringe_freq) = 1;
% Apply the filter
ft_filtered = ft_shifted .* filter;
% Calculate the inverse Fourier transform
ift = ifft2(ifftshift(ft_filtered));
% Calculate the phase distribution
phase = angle(ift);
% Display the phase distribution
figure;
imshow(phase, []);
% Unwrap the phase using the branch-cut algorithm
phase_unwrapped = branchcut(phase);
% Display the unwrapped phase distribution
figure;
imshow(phase_unwrapped, []);
% Define the branch-cut algorithm function
function unwrapped = branchcut(phase)
% Initialize the unwrapped phase
unwrapped = phase;
% Define the branch-cut threshold
threshold = pi;
% Loop over the image rows and columns
for i = 1:size(phase,1)
for j = 1:size(phase,2)
% Calculate the phase differences with the neighboring pixels
if i > 1
diff_up = unwrapped(i,j) - unwrapped(i-1,j);
else
diff_up = 0;
end
if i < size(phase,1)
diff_down = unwrapped(i,j) - unwrapped(i+1,j);
else
diff_down = 0;
end
if j > 1
diff_left = unwrapped(i,j) - unwrapped(i,j-1);
else
diff_left = 0;
end
if j < size(phase,2)
diff_right = unwrapped(i,j) - unwrapped(i,j+1);
else
diff_right = 0;
end
% Check if the phase differences exceed the threshold
if diff_up > threshold
unwrapped(i,j) = unwrapped(i,j) - 2*pi;
elseif diff_up < -threshold
unwrapped(i,j) = unwrapped(i,j) + 2*pi;
end
if diff_down > threshold
unwrapped(i,j) = unwrapped(i,j) - 2*pi;
elseif diff_down < -threshold
unwrapped(i,j) = unwrapped(i,j) + 2*pi;
end
if diff_left > threshold
unwrapped(i,j) = unwrapped(i,j) - 2*pi;
elseif diff_left < -threshold
unwrapped(i,j) = unwrapped(i,j) + 2*pi;
end
if diff_right > threshold
unwrapped(i,j) = unwrapped(i,j) - 2*pi;
elseif diff_right < -threshold
unwrapped(i,j) = unwrapped(i,j) + 2*pi;
end
end
end
end
```
注意:此程序仅供参考,具体的参数设置和算法实现可能需要根据具体的图像数据进行调整。
阅读全文