def trainGenerator(batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "grayscale", mask_color_mode = "grayscale",image_save_prefix = "image",mask_save_prefix = "mask", flag_multi_class = False,num_class = 2,save_to_dir = None,target_size = (256,256),seed = 1): ''' can generate image and mask at the same time use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same if you want to visualize the results of generator, set save_to_dir = "your path" ''' image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) #image_datagen中flow函数接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据。flow_from_directory函数以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据 image_generator = image_datagen.flow_from_directory( train_path, classes = [image_folder], class_mode = None, color_mode = image_color_mode, target_size = target_size, batch_size = batch_size, save_to_dir = save_to_dir, save_prefix = image_save_prefix, seed = seed) mask_generator = mask_datagen.flow_from_directory( train_path, classes = [mask_folder], class_mode = None, color_mode = mask_color_mode, target_size = target_size, batch_size = batch_size, save_to_dir = save_to_dir, save_prefix = mask_save_prefix, seed = seed) train_generator = zip(image_generator, mask_generator) for (img,mask) in train_generator: img,mask = adjustData(img,mask,flag_multi_class,num_class) yield (img,mask)
时间: 2024-04-21 10:29:05 浏览: 121
这是一个生成器函数,用于生成训练集的数据。其中参数batch_size表示每次生成的数据量,train_path表示训练集路径,image_folder表示保存图像数据的文件夹,mask_folder表示保存标签数据的文件夹,aug_dict表示数据增强的参数字典,image_color_mode表示图像数据的颜色模式,mask_color_mode表示标签数据的颜色模式,image_save_prefix和mask_save_prefix分别表示保存图像和标签数据的前缀,flag_multi_class表示是否为多分类问题,num_class表示分类数目,save_to_dir表示保存增强后的图像和标签数据的路径,target_size表示图像和标签数据的尺寸大小,seed表示随机数种子。
该函数首先使用ImageDataGenerator生成图像和标签数据的生成器,然后调用flow_from_directory函数生成经过数据增强或归一化后的图像和标签数据。最后,该函数使用zip函数将图像数据生成器和标签数据生成器打包成一个可迭代的train_generator,并通过调用adjustData函数对图像和标签数据进行预处理,最终返回预处理后的图像和标签数据。整个过程是在一个无限循环中不断地生成数据。
相关问题
def trainGenerator(batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "grayscale", mask_color_mode = "grayscale",image_save_prefix = "image",mask_save_prefix = "mask", flag_multi_class = False,num_class = 2,save_to_dir = None,target_size = (256,256),seed = 1):
这是一个用于训练生成器的函数,其中包括了一些参数,如批量大小、训练路径、图像文件夹、掩膜文件夹、数据增强字典、图像颜色模式、掩膜颜色模式、图像保存前缀、掩膜保存前缀、是否多类别、类别数量、保存目录、目标大小和种子等。这个函数的完整代码需要更多的上下文才能提供。
这段代码在运行时import SimpleITK as sitkimport numpy as npimport os# 设置文件路径data_path = 'C:/Users/Administrator/Desktop/LiTS2017/'save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017/'if not os.path.exists(save_path): os.makedirs(save_path)# 定义函数将3D图像保存为2D的.png格式def save_image_as_png(image, save_folder, name_prefix): for i in range(image.shape[2]): slice = np.squeeze(image[:, :, i]) slice = slice.astype(np.float32) slice *= 255.0/slice.max() slice = slice.astype(np.uint8) save_name = os.path.join(save_folder, name_prefix + '_' + str(i) + '.png') sitk.WriteImage(sitk.GetImageFromArray(slice), save_name)# 读取Training Batch 1中的图像image_path = os.path.join(data_path, 'Training Batch 1/volume-0.nii')image = sitk.ReadImage(image_path)image_array = sitk.GetArrayFromImage(image)save_folder = os.path.join(save_path, 'image')if not os.path.exists(save_folder): os.makedirs(save_folder)save_image_as_png(image_array, save_folder, 'img')# 读取Training Batch 2中的标签label_path = os.path.join(data_path, 'Training Batch 2/segmentation-0.nii')label = sitk.ReadImage(label_path)label_array = sitk.GetArrayFromImage(label)# 将标签转换为灰度图并保存label_array[label_array == 1] = 128label_array[label_array == 2] = 255save_folder = os.path.join(save_path, 'mask')if not os.path.exists(save_folder): os.makedirs(save_folder)save_image_as_png(label_array, save_folder, 'mask')会出现RuntimeWarning: divide by zero encountered in true_divide slice *= 255.0/slice.max()这种情况,修复它,并给出完整代码
出现这个警告是因为slice中存在值为0的像素,导致计算slice.max()时除数为0。可以在计算slice.max()之前先将0值像素赋为一个较小的非零值,比如1。以下是修改后的完整代码:
```python
import SimpleITK as sitk
import numpy as np
import os
# 设置文件路径
data_path = 'C:/Users/Administrator/Desktop/LiTS2017/'
save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017/'
if not os.path.exists(save_path):
os.makedirs(save_path)
# 定义函数将3D图像保存为2D的.png格式
def save_image_as_png(image, save_folder, name_prefix):
for i in range(image.shape[2]):
slice = np.squeeze(image[:, :, i])
slice = slice.astype(np.float32)
# 将0值像素赋为1
slice[slice == 0] = 1
slice *= 255.0/slice.max()
slice = slice.astype(np.uint8)
save_name = os.path.join(save_folder, name_prefix + '_' + str(i) + '.png')
sitk.WriteImage(sitk.GetImageFromArray(slice), save_name)
# 读取Training Batch 1中的图像
image_path = os.path.join(data_path, 'Training Batch 1/volume-0.nii')
image = sitk.ReadImage(image_path)
image_array = sitk.GetArrayFromImage(image)
save_folder = os.path.join(save_path, 'image')
if not os.path.exists(save_folder):
os.makedirs(save_folder)
save_image_as_png(image_array, save_folder, 'img')
# 读取Training Batch 2中的标签
label_path = os.path.join(data_path, 'Training Batch 2/segmentation-0.nii')
label = sitk.ReadImage(label_path)
label_array = sitk.GetArrayFromImage(label)
# 将标签转换为灰度图并保存
label_array[label_array == 1] = 128
label_array[label_array == 2] = 255
save_folder = os.path.join(save_path, 'mask')
if not os.path.exists(save_folder):
os.makedirs(save_folder)
save_image_as_png(label_array, save_folder, 'mask')
```
阅读全文