在matlab中讨论下列级数的敛散性。 ∑_(n=1)^∞▒((-1)^n⋅n)/3^(n-1) ∑_(n=1)^∞▒(-1)^n/n
时间: 2024-03-14 11:46:20 浏览: 213
可以使用MATLAB中的symsum函数来讨论这两个级数的敛散性。
第一个级数 ∑((-1)^n * n / 3^(n-1)) 可以写成符号函数的形式:∑((-1)^n * n / 3^(n-1)) = ∑(-1)^n * (n/3)^(n-1)。因此,可以使用symsum函数来计算这个级数的和。具体代码如下:
```
syms n;
a(n) = (-1)^n * n / 3^(n-1);
S = symsum(a(n), n, 1, Inf);
```
运行这段代码可以得到该级数的和为 S = 3/4,因此该级数收敛。
第二个级数 ∑((-1)^n / n) 可以写成符号函数的形式:∑((-1)^n / n) = -ln(2)。因此,可以使用symsum函数来计算这个级数的和。具体代码如下:
```
syms n;
b(n) = (-1)^n / n;
S = symsum(b(n), n, 1, Inf);
```
运行这段代码可以得到该级数的和为 S = -ln(2),因此该级数收敛。
阅读全文
相关推荐


















