python实现手势识别_OpenCV+python手势识别框架和实例讲解

时间: 2023-10-23 13:08:31 浏览: 370
好的,下面是关于Python实现手势识别的讲解。 手势识别是计算机视觉领域的一个重要应用,可以应用于很多场景,比如手势控制智能家居、手势控制游戏等。本文介绍一种基于OpenCV和Python实现的手势识别框架。 首先,需要安装OpenCV库。可以通过pip install opencv-python安装。 接下来,需要准备一些训练数据。可以使用手势识别数据集,也可以自己录制一些手势视频作为训练数据。这里以自己录制的视频为例。 步骤如下: 1.读取视频帧 使用OpenCV读取视频帧,可以使用cv2.VideoCapture()函数。代码如下: ``` python import cv2 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 这里使用的是电脑自带的摄像头,如果使用外接摄像头,则需要将0改为1或者2等,表示摄像头的编号。 2.手势检测 对于每一帧图像,需要进行手势检测,可以使用肤色检测的方法。代码如下: ``` python import cv2 import numpy as np cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # 翻转图像 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 转换颜色空间 lower_skin = np.array([0, 20, 70], dtype=np.uint8) upper_skin = np.array([20, 255, 255], dtype=np.uint8) mask = cv2.inRange(hsv, lower_skin, upper_skin) # 掩膜 res = cv2.bitwise_and(frame, frame, mask=mask) # 图像与运算 cv2.imshow('frame', frame) cv2.imshow('mask', mask) cv2.imshow('res', res) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 这里使用的是HSV颜色空间,对肤色进行了阈值处理,得到掩膜,然后进行与运算,得到手部区域。 3.手势识别 对于手部区域,可以使用轮廓检测的方法,得到手部轮廓。代码如下: ``` python import cv2 import numpy as np cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # 翻转图像 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 转换颜色空间 lower_skin = np.array([0, 20, 70], dtype=np.uint8) upper_skin = np.array([20, 255, 255], dtype=np.uint8) mask = cv2.inRange(hsv, lower_skin, upper_skin) # 掩膜 res = cv2.bitwise_and(frame, frame, mask=mask) # 图像与运算 gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) # 灰度图像 ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 二值化 _, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt = max(contours, key=cv2.contourArea) # 手部轮廓 cv2.drawContours(frame, [cnt], 0, (0, 255, 0), 2) # 绘制轮廓 cv2.imshow('frame', frame) cv2.imshow('mask', mask) cv2.imshow('res', res) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 这里使用的是cv2.findContours()函数进行轮廓检测,然后找到最大轮廓,绘制出手部轮廓。 4.手势分类 对于手部轮廓,可以使用机器学习算法进行分类,得到手势的类别。这里使用KNN算法进行分类。代码如下: ``` python import cv2 import numpy as np from sklearn.neighbors import KNeighborsClassifier cap = cv2.VideoCapture(0) k = 5 # KNN算法中的k值 hand_hist = None # 手部直方图 # 训练KNN分类器 def train_knn(): global hand_hist # 读取训练数据 with np.load('hand_data.npz') as data: train = data['train'] train_labels = data['train_labels'] # 计算手部直方图 hsv = cv2.cvtColor(train, cv2.COLOR_BGR2HSV) roi = np.zeros([1, 50, 50, 3], dtype=hsv.dtype) roi[0] = hsv[0:50, 0:50] hsv_hist = cv2.calcHist(roi, [0, 1], None, [180, 256], [0, 180, 0, 256]) cv2.normalize(hsv_hist, hsv_hist, 0, 255, cv2.NORM_MINMAX) hand_hist = hsv_hist.reshape([1, 180 * 256]) # 训练KNN分类器 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(hand_hist, train_labels) return knn # 手势分类 def classify(frame, knn): global hand_hist hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv], [0, 1], hand_hist, [0, 180, 0, 256], 1) _, thresh = cv2.threshold(dst, 0, 255, cv2.THRESH_BINARY) thresh = cv2.merge((thresh, thresh, thresh)) res = cv2.bitwise_and(frame, thresh) gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) _, contours, hierarchy = cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(contours) > 0: cnt = max(contours, key=cv2.contourArea) if cv2.contourArea(cnt) > 1000: x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) roi = gray[y:y + h, x:x + w] roi = cv2.resize(roi, (50, 50), interpolation=cv2.INTER_LINEAR) roi = roi.reshape([1, 50 * 50]) result = knn.predict(roi) cv2.putText(frame, chr(result + 65), (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) return frame # 训练KNN分类器 knn = train_knn() while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) # 翻转图像 if hand_hist is None: cv2.putText(frame, 'Press Space to calibrate', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) else: frame = classify(frame, knn) cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break elif cv2.waitKey(1) & 0xFF == ord(' '): hand_hist = None cap.release() cv2.destroyAllWindows() ``` 这里使用的是KNN算法进行分类,需要先训练KNN分类器。训练数据可以使用手势识别数据集,也可以使用自己录制的手势视频。这里使用的是手势识别数据集。训练数据需要保存到文件中,可以使用numpy.savez()函数进行保存,使用numpy.load()函数进行读取。 对于每一帧图像,需要先计算手部直方图,然后使用cv2.calcBackProject()函数进行反向投影,得到手部区域。对手部区域进行二值化、轮廓检测、矩形框选、手势分类等操作,最终得到手势类别。 以上就是基于OpenCV和Python实现手势识别的框架和实例讲解。
阅读全文

相关推荐

最新推荐

recommend-type

python用TensorFlow做图像识别的实现

【Python使用TensorFlow进行图像识别】 一、TensorFlow概述 TensorFlow是由Google开发的一个强大的开源机器学习库,它简化了创建、训练和部署机器学习模型的过程。通过定义数据流图,用户可以描述计算过程,而...
recommend-type

python+opencv实现车牌定位功能(实例代码)

下面我们将详细讨论如何利用 Python 和 OpenCV 来实现车牌定位。 首先,我们需要对输入的图片进行预处理。预处理步骤包括: 1. **颜色转换**:将彩色图像转换为灰度图像,减少处理复杂性。在这个例子中,使用 `cv2...
recommend-type

Python+OpenCV实现实时眼动追踪的示例代码

在本示例中,我们将探讨如何使用Python和OpenCV库实现实时的眼动追踪功能。首先,眼动追踪是一项技术,它允许系统检测并跟踪用户的眼睛运动,这在人机交互、心理学研究以及某些医疗应用中都有广泛的应用。OpenCV...
recommend-type

python+opencv边缘提取与各函数参数解析

【Python + OpenCV 边缘提取与函数参数解析】 在机器视觉领域,边缘检测是至关重要的一步,它...通过实例代码和详细的函数解析,我们可以更好地理解如何在Python中实现边缘提取,并为后续的机器视觉应用打下坚实基础。
recommend-type

Python OpenCV对本地视频文件进行分帧保存的实例

总的来说,这个实例展示了如何使用OpenCV在Python中实现视频文件的分帧操作,这对于视频分析、帧处理或动态图像研究等应用场景非常有用。通过调整参数,你可以根据实际需求自定义帧的大小、保存频率和目标格式。同时...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。