python求得交叉熵损失值代码

时间: 2023-05-16 13:06:48 浏览: 48
以下是 Python 中求交叉熵损失值的代码: import numpy as np def cross_entropy_loss(y_pred, y_true): """ 计算交叉熵损失值 :param y_pred: 预测值,形状为 (batch_size, num_classes) :param y_true: 真实值,形状为 (batch_size, num_classes) :return: 交叉熵损失值 """ # 防止出现 log(0) 的情况,加上一个极小值 eps = 1e-15 # 计算交叉熵损失值 loss = -np.sum(y_true * np.log(y_pred + eps)) # 返回平均损失值 return loss / y_pred.shape[0]
相关问题

④根据上图来解释RNN的计算过程。 ⑤模型中需要学习的参数在哪⼉?有⼏组?请在上图中画出。 ⑥中间某时刻的输出h应当如何求得? ⑦对于当前的问题,损失应当如何求得? ⑧这样基于时间的反向传播如何进⾏? ⑨为什么说这样的⽹络能够传递时间序列信息? ⑩参考"N-1"结构,设计RNN⽹络实现MNIST的识别。

④ RNN的计算过程如下: 输入序列 $x = (x_1, x_2, ..., x_T)$,每个输入 $x_t$ 都会和上一个时刻的隐藏状态 $h_{t-1}$ 进行计算,得到当前时刻的隐藏状态 $h_t$。具体地,计算过程如下: $$h_t = \sigma(W_{hh}h_{t-1} + W_{xh}x_t)$$ 其中,$W_{hh}$ 和 $W_{xh}$ 是需要学习的权重矩阵,$\sigma$ 是激活函数(通常使用 tanh 或者 ReLU),$h_t$ 是当前时刻的隐藏状态。 然后,可以将当前时刻的隐藏状态 $h_t$ 作为输出 $y_t$,也可以将其传递给下一个时刻继续计算。 $$y_t = W_{hy}h_t$$ ⑤ 模型中需要学习的参数如下: 1. $W_{hh}$: 隐藏状态的权重矩阵,大小为 (hidden_size, hidden_size)。 2. $W_{xh}$: 输入的权重矩阵,大小为 (hidden_size, input_size)。 3. $W_{hy}$: 输出的权重矩阵,大小为 (output_size, hidden_size)。 4. $h_0$: 初始的隐藏状态,大小为 (hidden_size,)。 其中,hidden_size、input_size 和 output_size 分别表示隐藏状态、输入和输出的维度。 ⑥ 中间某时刻的输出 $h_t$ 可以通过前向计算得到,具体地: $$h_t = \sigma(W_{hh}h_{t-1} + W_{xh}x_t)$$ 其中,$h_{t-1}$ 表示上一个时刻的隐藏状态,$x_t$ 表示当前时刻的输入。 ⑦ 对于当前的问题(假设是分类问题),可以使用交叉熵损失函数来衡量模型的错误率。具体地,假设有 $C$ 个类别,$y_t$ 表示模型在第 $t$ 个时刻的输出概率向量,$p_t^{(i)}$ 表示模型预测第 $t$ 个时刻的输入属于第 $i$ 个类别的概率,$y_t^{(i)}$ 表示第 $i$ 个类别在 $y_t$ 中的概率,那么损失函数可以定义为: $$L = -\sum_{t=1}^T\sum_{i=1}^C y_t^{(i)}\log p_t^{(i)}$$ 其中,$\log$ 表示自然对数。 ⑧ 基于时间的反向传播可以通过反向计算每个时刻的梯度来实现。具体地,假设在第 $t$ 个时刻的损失函数为 $L_t$,那么可以通过以下公式计算 $L_t$ 对各个参数的梯度: $$\frac{\partial L_t}{\partial W_{hh}} = \frac{\partial L_t}{\partial h_t} \cdot \frac{\partial h_t}{\partial W_{hh}} + \frac{\partial L_{t+1}}{\partial h_t} \cdot \frac{\partial h_{t+1}}{\partial h_t} \cdot \frac{\partial h_t}{\partial W_{hh}} + \frac{\partial L_{t+2}}{\partial h_t} \cdot \frac{\partial h_{t+2}}{\partial h_{t+1}} \cdot \frac{\partial h_{t+1}}{\partial h_t} \cdot \frac{\partial h_t}{\partial W_{hh}} + ...$$ 其中,$\frac{\partial L_t}{\partial h_t}$ 表示损失函数对当前时刻的隐藏状态的梯度,可以通过反向传播算法计算得到。$\frac{\partial h_t}{\partial W_{hh}}$ 表示当前时刻隐藏状态对权重矩阵的梯度,可以通过前向计算和反向传播计算得到。 ⑨ RNN 网络能够传递时间序列信息,是因为它在每个时刻都会接收到上一个时刻的隐藏状态作为输入,从而可以将前面时刻的信息传递到后面的时刻。因此,RNN 网络可以对时间序列数据进行建模,例如语音识别、自然语言处理、股票预测等问题。 ⑩ 对于 "N-1" 结构的 MNIST 识别问题,可以使用 RNN 来实现。具体地,可以将每行像素看做一个时间步长,将每个像素点的值作为输入,将每个时间步长的输出合并到一起,最后使用 softmax 函数进行分类。具体的实现可以参考以下代码(仅为示例,实际效果可能不是很好): ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义RNN模型 class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): # x: (batch_size, seq_len, input_size) # h0: (1, batch_size, hidden_size) h0 = torch.zeros(1, x.size(0), self.hidden_size) # out: (batch_size, seq_len, hidden_size) out, _ = self.rnn(x, h0) # out: (batch_size, hidden_size) out = out[:, -1, :] # out: (batch_size, output_size) out = self.fc(out) return out # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # 定义模型和优化器 model = RNN(input_size=28, hidden_size=64, output_size=10) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 for epoch in range(10): for i, (images, labels) in enumerate(train_loader): # images: (batch_size, 1, 28, 28) # labels: (batch_size,) images = images.squeeze(1) # (batch_size, 28, 28) outputs = model(images) # (batch_size, 10) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, len(train_loader), loss.item())) # 测试模型 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.squeeze(1) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ```
阅读全文

相关推荐

最新推荐

recommend-type

Python计算IV值的示例讲解

【Python 计算 IV 值】 IV(Information Value,信息值)是一种衡量分类变量对目标变量区分能力的统计量,常用于数据预处理阶段,...这些基础知识在Python编程中非常基础且实用,对于理解和编写高效的代码至关重要。
recommend-type

基于python实现计算两组数据P值

在上述代码中,`get_p_value`函数接受两个列表`arrA`和`arrB`作为输入,然后使用`ttest_ind`函数计算它们之间的P值。`ttest_ind`返回两个值:t统计量和P值。这里我们只关注P值,因为它直接反映了我们是否可以拒绝原...
recommend-type

python中如何设置代码自动提示

在Python编程过程中,代码自动提示是一项非常实用的功能,它能够帮助开发者快速输入代码,提高编写效率,减少出错的可能性。本文将详细介绍如何在PyCharm中设置代码自动提示,并拓展讨论其他编辑器的自动补全功能。 ...
recommend-type

python程序快速缩进多行代码方法总结

在Python编程语言中,缩进是非常关键的一部分,它不同于许多其他编程语言,如C、Java等,用大括号来定义代码块。Python通过缩进来表示代码块的层次结构,如函数、循环、条件语句等。理解并熟练掌握如何快速缩进多行...
recommend-type

答题辅助python代码实现

本题主要涉及的是使用Python编程语言来实现一个答题辅助工具,该工具能够自动识别屏幕上的问题和答案选项。以下是对实现这个功能的关键技术点的详细解释: 1. **屏幕截图**:首先,代码中使用了`screenshot`模块来...
recommend-type

IEEE 14总线系统Simulink模型开发指南与案例研究

资源摘要信息:"IEEE 14 总线系统 Simulink 模型是基于 IEEE 指南而开发的,可以用于多种电力系统分析研究,比如短路分析、潮流研究以及互连电网问题等。模型具体使用了 MATLAB 这一数学计算与仿真软件进行开发,模型文件为 Fourteen_bus.mdl.zip 和 Fourteen_bus.zip,其中 .mdl 文件是 MATLAB 的仿真模型文件,而 .zip 文件则是为了便于传输和分发而进行的压缩文件格式。" IEEE 14总线系统是电力工程领域中用于仿真实验和研究的基础测试系统,它是根据IEEE(电气和电子工程师协会)的指南设计的,目的是为了提供一个标准化的测试平台,以便研究人员和工程师可以比较不同的电力系统分析方法和优化技术。IEEE 14总线系统通常包括14个节点(总线),这些节点通过一系列的传输线路和变压器相互连接,以此来模拟实际电网中各个电网元素之间的电气关系。 Simulink是MATLAB的一个附加产品,它提供了一个可视化的环境用于模拟、多域仿真和基于模型的设计。Simulink可以用来模拟各种动态系统,包括线性、非线性、连续时间、离散时间以及混合信号系统,这使得它非常适合电力系统建模和仿真。通过使用Simulink,工程师可以构建复杂的仿真模型,其中就包括了IEEE 14总线系统。 在电力系统分析中,短路分析用于确定在特定故障条件下电力系统的响应。了解短路电流的大小和分布对于保护设备的选择和设置至关重要。潮流研究则关注于电力系统的稳态操作,通过潮流计算可以了解在正常运行条件下各个节点的电压幅值、相位和系统中功率流的分布情况。 在进行互连电网问题的研究时,IEEE 14总线系统也可以作为一个测试案例,研究人员可以通过它来分析电网中的稳定性、可靠性以及安全性问题。此外,它也可以用于研究分布式发电、负载管理和系统规划等问题。 将IEEE 14总线系统的模型文件打包为.zip格式,是一种常见的做法,以减小文件大小,便于存储和传输。在解压.zip文件之后,用户就可以获得包含所有必要组件的完整模型文件,进而可以在MATLAB的环境中加载和运行该模型,进行上述提到的多种电力系统分析。 总的来说,IEEE 14总线系统 Simulink模型提供了一个有力的工具,使得电力系统的工程师和研究人员可以有效地进行各种电力系统分析与研究,并且Simulink模型文件的可复用性和可视化界面大大提高了工作的效率和准确性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【数据安全黄金法则】:R语言中party包的数据处理与隐私保护

![【数据安全黄金法则】:R语言中party包的数据处理与隐私保护](https://media.geeksforgeeks.org/wp-content/uploads/20220603131009/Group42.jpg) # 1. 数据安全黄金法则与R语言概述 在当今数字化时代,数据安全已成为企业、政府机构以及个人用户最为关注的问题之一。数据安全黄金法则,即最小权限原则、加密保护和定期评估,是构建数据保护体系的基石。通过这一章节,我们将介绍R语言——一个在统计分析和数据科学领域广泛应用的编程语言,以及它在实现数据安全策略中所能发挥的独特作用。 ## 1.1 R语言简介 R语言是一种
recommend-type

Takagi-Sugeno模糊控制方法的原理是什么?如何设计一个基于此方法的零阶或一阶模糊控制系统?

Takagi-Sugeno模糊控制方法是一种特殊的模糊推理系统,它通过一组基于规则的模糊模型来逼近系统的动态行为。与传统的模糊控制系统相比,该方法的核心在于将去模糊化过程集成到模糊推理中,能够直接提供系统的精确输出,特别适合于复杂系统的建模和控制。 参考资源链接:[Takagi-Sugeno模糊控制原理与应用详解](https://wenku.csdn.net/doc/2o97444da0?spm=1055.2569.3001.10343) 零阶Takagi-Sugeno系统通常包含基于规则的决策,它不包含系统的动态信息,适用于那些系统行为可以通过一组静态的、非线性映射来描述的场合。而一阶
recommend-type

STLinkV2.J16.S4固件更新与应用指南

资源摘要信息:"STLinkV2.J16.S4固件.zip包含了用于STLinkV2系列调试器的JTAG/SWD接口固件,具体版本为J16.S4。固件文件的格式为二进制文件(.bin),适用于STMicroelectronics(意法半导体)的特定型号的调试器,用于固件升级或更新。" STLinkV2.J16.S4固件是指针对STLinkV2系列调试器的固件版本J16.S4。STLinkV2是一种常用于编程和调试STM32和STM8微控制器的调试器,由意法半导体(STMicroelectronics)生产。固件是指嵌入在设备硬件中的软件,负责执行设备的低级控制和管理任务。 固件版本J16.S4中的"J16"可能表示该固件的修订版本号,"S4"可能表示次级版本或是特定于某个系列的固件。固件版本号可以用来区分不同时间点发布的更新和功能改进,开发者和用户可以根据需要选择合适的版本进行更新。 通常情况下,固件升级可以带来以下好处: 1. 增加对新芯片的支持:随着新芯片的推出,固件升级可以使得调试器能够支持更多新型号的微控制器。 2. 提升性能:修复已知的性能问题,提高设备运行的稳定性和效率。 3. 增加新功能:可能包括对调试协议的增强,或是新工具的支持。 4. 修正错误:对已知错误进行修正,提升调试器的兼容性和可靠性。 使用STLinkV2.J16.S4固件之前,用户需要确保固件与当前的硬件型号兼容。更新固件的步骤大致如下: 1. 下载固件文件STLinkV2.J16.S4.bin。 2. 打开STLink的软件更新工具(可能是ST-Link Utility),该工具由STMicroelectronics提供,用于管理固件更新过程。 3. 通过软件将下载的固件文件导入到调试器中。 4. 按照提示完成固件更新过程。 在进行固件更新之前,强烈建议用户仔细阅读相关的更新指南和操作手册,以避免因操作不当导致调试器损坏。如果用户不确定如何操作,应该联系设备供应商或专业技术人员进行咨询。 固件更新完成后,用户应该检查调试器是否能够正常工作,并通过简单的测试项目验证固件的功能是否正常。如果存在任何问题,应立即停止使用并联系技术支持。 固件文件通常位于STMicroelectronics官方网站或专门的软件支持平台上,用户可以在这里下载最新的固件文件,以及获得技术支持和更新日志。STMicroelectronics网站上还会提供固件更新工具,它是更新固件的必备工具。 由于固件涉及到硬件设备的底层操作,错误的固件升级可能会导致设备变砖(无法使用)。因此,在进行固件更新之前,用户应确保了解固件更新的风险,备份好重要数据,并在必要时寻求专业帮助。