分析一下下面这段代码void ncds_apply_pkg_info(char *xml, NC_DATASTORE target, char *pXmlns) { struct ncds_ds_list* dsl; struct ncds_ds *ds; for (dsl = ncds.datastores; dsl != NULL; dsl = dsl->next) { #if 0 if (dsl->datastore->id >= 0 && dsl->datastore->id < internal_ds_count) { continue; } if (!xmlStrncmp(dsl->datastore->data_model->name, "ietf-netconf-server", xmlStrlen("ietf-netconf-server"))) { continue; } if (!xmlStrncmp(dsl->datastore->data_model->name, "netopeer-cfgnetopeer", xmlStrlen("netopeer-cfgnetopeer"))) { continue; } #endif if (xmlStrncmp(dsl->datastore->data_model->name, pXmlns, xmlStrlen(pXmlns))) { continue; } ds = dsl->datastore; DBG("%s/%d ds->datastore->name %s type is file",__func__,__LINE__,ds->data_model->name); if (NCDS_TYPE_FILE == ds->type) { ncds_file_editconfig_internal(ds, target, (xmlChar*)xml); } } }

时间: 2024-04-26 20:25:43 浏览: 14
这段代码是一个函数,函数名为`ncds_apply_pkg_info`,接受三个参数:`char *xml`,`NC_DATASTORE target`和`char *pXmlns`。函数的作用是将一个XML字符串应用到指定的数据存储中。具体来说,函数会遍历数据存储列表中的每个数据存储,对于满足一定条件的数据存储,将XML字符串应用到该数据存储中。 在代码中,`struct ncds_ds_list* dsl`是数据存储列表中的一个节点,`struct ncds_ds *ds`是该节点对应的数据存储。代码首先遍历数据存储列表中的每个节点,然后依次进行一些判断。其中: - `#if 0`和对应的`#endif`之间的代码是注释,被忽略。 - 如果数据存储的ID在`internal_ds_count`之内,则跳过该数据存储。 - 如果数据存储的数据模型名称为`ietf-netconf-server`或者`netopeer-cfgnetopeer`,则跳过该数据存储。 - 如果数据存储的数据模型名称与`pXmlns`不相同,则跳过该数据存储。 最后,如果数据存储的类型为文件(`NCDS_TYPE_FILE == ds->type`),则调用`ncds_file_editconfig_internal`函数将XML字符串应用到该数据存储中。
相关问题

一句句解释分析细致讲解一下这段代码void ncds_apply_pkg_info(char *xml, NC_DATASTORE target, char *pXmlns) { struct ncds_ds_list* dsl; struct ncds_ds *ds; for (dsl = ncds.datastores; dsl != NULL; dsl = dsl->next) { if (xmlStrncmp(dsl->datastore->data_model->name, pXmlns, xmlStrlen(pXmlns))) { continue; } ds = dsl->datastore; DBG("%s/%d ds->datastore->name %s type is file",__func__,__LINE__,ds->data_model->name); if (NCDS_TYPE_FILE == ds->type) { ncds_file_editconfig_internal(ds, target, (xmlChar*)xml); } } }

这段代码是一个函数定义,函数名为 `ncds_apply_pkg_info`,接受三个参数:一个 `char*` 类型的 `xml`,一个 `NC_DATASTORE` 类型的 `target`,以及一个 `char*` 类型的 `pXmlns`。 函数的目的是根据给定的 XML 数据,将其应用到指定的数据存储(`target`)中。函数内部使用了一些结构体和循环来遍历数据存储列表,并根据条件判断来决定是否应用 XML 数据。 首先,定义了两个结构体指针变量 `dsl` 和 `ds`。然后,通过一个循环遍历 `ncds.datastores` 列表,该列表存储了数据存储的信息。 在循环中,首先使用 `xmlStrncmp` 函数比较 `dsl->datastore->data_model->name` 和 `pXmlns` 的前 `xmlStrlen(pXmlns)` 个字符是否相等。如果不相等,则继续下一次循环。 如果相等,则将 `dsl->datastore` 赋值给 `ds`。接下来,通过调用 `DBG` 宏打印一条调试信息,输出函数名、行号以及 `ds->data_model->name` 的值。 然后,通过判断 `ds->type` 是否等于 `NCDS_TYPE_FILE`,决定是否执行下一步操作。 如果是文件类型,调用函数 `ncds_file_editconfig_internal`,将 `ds`、`target` 以及 `xml` 的强制类型转换后的值作为参数传递进去,对数据存储进行修改。 整体来说,这段代码是一个根据给定的 XML 数据,将其应用到符合条件的数据存储中的函数。具体的逻辑和操作可能还需要了解其他相关的代码才能完全理解。

int ncds_file_editconfig_internal (struct ncds_ds *ds, NC_DATASTORE target, char *config)的作用

这段代码定义了一个名为 `ncds_file_editconfig_internal` 的函数,接受三个参数:`struct ncds_ds *ds`、`NC_DATASTORE target` 和 `char *config`。 函数的作用是执行文件数据存储的编辑配置操作。具体来说,函数根据传入的参数,对指定的数据存储进行编辑配置。 在函数内部,首先会根据 `ds` 和 `target` 参数获取到对应的文件数据存储对象。然后,根据传入的 `config` 字符串,进行相应的配置编辑操作。 具体的配置编辑操作并不在这段代码中给出,因此无法对其进行具体解释。但可以根据函数名和参数推测,该函数可能会涉及读取和修改文件的操作,以实现编辑配置的功能。 总体而言,这段代码定义了一个用于执行文件数据存储编辑配置操作的函数,通过传入的参数获取到对应的数据存储对象,并根据传入的配置字符串进行相应的编辑操作。

相关推荐

解释分析细致讲解一下这段代码int ncds_file_editconfig_internal (struct ncds_ds *ds, NC_DATASTORE target, char config) { struct ncds_ds_file * file_ds = (struct ncds_ds_file )ds; xmlDocPtr config_doc, datastore_doc; xmlNodePtr target_ds, tmp_target_ds, aux_node, root; int retval = EXIT_SUCCESS, ret; char aux = NULL; const char configp; LOCK(file_ds,ret); if (ret) { return EXIT_FAILURE; } DBG("enter %s/%d\n", func,LINE); if(file_fill_dsnodes(file_ds)) { UNLOCK(file_ds); ERROR("%s: file_ds->running_all/startup_all/candidate_all is NULL\n", func); return EXIT_FAILURE; } DBG("%s step1\n", func); file_rollback_store(file_ds); switch(target) { case NC_DATASTORE_RUNNING: target_ds = file_ds->running; break; case NC_DATASTORE_STARTUP: target_ds = file_ds->startup; break; case NC_DATASTORE_CANDIDATE: target_ds = file_ds->candidate; break; default: UNLOCK(file_ds); ERROR("%s: invalid target.", func); return EXIT_FAILURE; break; } if (strncmp(config, "<?xml", 5) == 0) { if ((configp = strchr(config, '>')) == NULL) { UNLOCK(file_ds); ERROR("%s: invalid config.", func); return EXIT_FAILURE; } ++configp; while (*configp == ' ' || *configp == '\n' || configp == '\t') { ++configp; } } else { configp = config; } if (asprintf(&aux, "<config>%s</config>", configp) == -1) { UNLOCK(file_ds); ERROR("asprintf() failed (%s:%d).", FILE, LINE); return EXIT_FAILURE; } if ((config_doc = xmlReadMemory (aux, strlen(aux), NULL, NULL, NC_XMLREAD_OPTIONS)) == NULL) { UNLOCK(file_ds); free(aux); ERROR("%s: Reading xml data failed!", func); return EXIT_FAILURE; } free(aux); root = xmlDocGetRootElement(config_doc); for (aux_node = root->children; aux_node != NULL; aux_node = root->children) { xmlUnlinkNode(aux_node); xmlAddNextSibling(config_doc->last, aux_node); } aux_node = root->next; xmlUnlinkNode(root); xmlFreeNode(root); datastore_doc = xmlNewDoc (BAD_CAST "1.0"); xmlDocSetRootElement(datastore_doc, xmlCopyNode(target_ds->children, 1)); if (target_ds->children) { for (root = target_ds->children->next; root != NULL; root = aux_node) { aux_node = root->next; xmlAddNextSibling(datastore_doc->last, xmlCopyNode(root, 1)); } } retval = edit_config_internal(datastore_doc, config_doc, (struct ncds_ds)file_ds, NC_EDIT_DEFOP_NOTSET); if (EXIT_SUCCESS == retval) { #if 1 while ((aux_node = target_ds->children) != NULL) { xmlUnlinkNode(aux_node); xmlFreeNode(aux_node); } xmlAddChildList(target_ds, xmlCopyNodeList(datastore_doc->children)); if (file_sync(file_ds)) { retval = EXIT_FAILURE; } #endif } else { retval = EXIT_FAILURE; } UNLOCK(file_ds); xmlFreeDoc (datastore_doc); xmlFreeDoc (config_doc); return retval; }

void ifOptLaserTmpGet15minHistory(net_if *pNetIf,UINT8 portNum) { char objectName[MAX_IFNAME_LEN] = {0}; char pmParaName[MAX_COMMON_LEN] = {0}; char granularity[MAX_COMMON_LEN] = {0}; char startTime[MAX_ALARM_TIME_LENGTH] = {0}; char objectType[MAX_COMMON_LEN] = {0}; char maxValue[MAX_COMMON_LEN] = {0}; char minValue[MAX_COMMON_LEN] = {0}; char aveValue[MAX_COMMON_LEN] = {0}; char curValue[MAX_COMMON_LEN] = {0}; char *pTime = NULL; char *pStartTime = NULL; time_t etime; UINT32 length = 0; char timechange[32]={0}; etime = time(NULL); if (etime == -1) { ERROR("ifAnalogGet get start or end time failed (%s).", strerror(errno)); return; } if ((pTime = nc_time2datetime(etime, NULL)) == NULL) { ERROR("ifAnalogGet Internal error when converting time formats."); return; } pStartTime = pTime; timechange15Min(pStartTime,timechange); snprintf(objectName,MAX_IFNAME_LEN,"PTP=/shelf=1/slot=1/subslot=1/port=%u",portNum); snprintf(pmParaName,MAX_COMMON_LEN,"LASER_TMP"); snprintf(granularity,MAX_COMMON_LEN,"%s","15min"); snprintf(startTime,MAX_ALARM_TIME_LENGTH,"%s",timechange); snprintf(objectType,MAX_COMMON_LEN,"%s","PTP"); ncGetPerfInfo(portNum,NC_LASER_TMP,NC_MAX_VALUE,maxValue); ncGetPerfInfo(portNum,NC_LASER_TMP,NC_MIN_VALUE,minValue); ncGetPerfInfo(portNum,NC_LASER_TMP,NC_AVE_VALUE,aveValue); ifGetCurLaserTmp(pNetIf,curValue); //ncGetPerfInfo(portNum - 1,NC_CUR_VALUE,NC_LASER_TMP,curValue); memset(g_15minhistoryperf[portNum-1].parame[Opt_LASERTMP].pkg,0,HISTORY_PERF_PARAM_BUFF); length = snprintf(g_15minhistoryperf[portNum-1].parame[Opt_LASERTMP].pkg, HISTORY_PERF_PARAM_BUFF, PM_MODE_ANALOG_INIT_XML, objectName, pmParaName, granularity, startTime, objectType, maxValue, minValue, aveValue, curValue); DBG("%s/%d xml_send_buffer %s length %d",__func__,__LINE__,g_15minhistoryperf[portNum-1].parame[Opt_LASERTMP].pkg,length); // ncds_apply_pkg_info(pXmlSendBuf,NC_DATASTORE_RUNNING,"acc-performance"); }

最新推荐

recommend-type

基于TC72(SPI接口)温度传感器、STM32F103C8T6、LCD1602、FREERTOS的温度采集proteus仿真

spi
recommend-type

ehcache-core-2.6.9.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

netty-transport-native-unix-common-4.1.51.Final.jar

javaEE javaweb常用jar包 , 亲测可用,下载后导入到java工程中使用。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平