基于python和pytorch写一个基于卷积神经网络的图象水印项目代码
时间: 2023-03-01 14:11:31 浏览: 133
以下是一份基于卷积神经网络的图像水印项目代码的示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class WatermarkNet(nn.Module):
def __init__(self):
super(WatermarkNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = WatermarkNet()
print(model)
```
该代码基于PyTorch创建了一个卷积神经网络模型`WatermarkNet`。它包含了多个卷积层和全连接层,并使用了激活函数和池化层。最后,一个实例化的模型被创建,并输出了模型的概述。
阅读全文