GM(1,n)的matlab代码

时间: 2023-10-03 13:05:48 浏览: 147
下面是GM(1,n)的matlab代码: ```matlab function [y, x0, a] = gm11n(x) % GM(1,n)模型预测和参数估计 % 输入参数: % x -- 原始序列向量 % 输出参数: % y -- 预测序列向量 % x0 -- 灰色作用量序列 % a -- 灰色作用量累加生成序列参数 n = length(x); x0 = cumsum(x); % 灰色作用量序列 z = zeros(1, n-1); for i = 1: n - 1 z(i) = (x0(i) + x0(i+1)) / 2; end B = [-z', ones(n-1, 1)]; Y = x(2:end)'; a = B\Y; % 最小二乘法估计参数 y0 = (x(1) - a(2)/a(1)) * exp(-a(1)*[0:n-1]); % 通过灰色微分方程求解y(0) y = diff([y0, x0]); % 预测序列 end ``` 其中,输入参数为原始序列向量,输出参数为预测序列向量、灰色作用量序列和灰色作用量累加生成序列参数。
相关问题

gm(1,n)模型matlab代码

GM(1, n)模型是一种常用的灰色预测模型,用于对未来的趋势进行预测。下面是一个简单的GM(1, n)模型的MATLAB代码: ```MATLAB function [y_predict] = gm_1n(x) % GM(1, n)模型 % 输入参数: % x: 输入原始数据序列,大小为1xN % 输出参数: % y_predict: 预测结果序列,大小为1x(N+1) % 累加生成序列 X1 = cumsum(x); % 使用矩阵生成B矩阵及Y矩阵 N = length(x); B = zeros(N-1, 2); Y = zeros(N-1, 1); for i = 1:N-1 B(i, 1) = -(X1(i) + X1(i+1)) / 2; B(i, 2) = 1; Y(i) = x(i+1); end % 参数a和u的最小二乘估计 a_u = pinv(B' * B) * B' * Y; % 模型校验 delta = zeros(1, N-1); Y_predict = zeros(1, N-1); for i = 1:N-1 delta(i) = Y(i) - (a_u(1) * exp(a_u(2) * i) + a_u(4)); Y_predict(i) = a_u(1) * exp(a_u(2) * i) + a_u(4); end % 求简化度 C = abs(delta) ./ abs(Y(1:N-1)); C_avg = mean(C); % 绘制预测结果图 figure() plot(x, 'b', 'LineWidth', 1.5); hold on plot(Y_predict, 'r', 'LineWidth', 1.5); hold off legend('原始数据', '预测数据'); title('GM(1, n)预测结果'); xlabel('时间'); ylabel('数据'); grid on; % 预测结果 y_predict = [x Y_predict(N-1)]; ``` 这段代码中,我们首先对输入数据进行累加运算,然后使用最小二乘估计法求得参数a和u,接着进行模型校验,使用简化度来评估模型的拟合程度。最后,通过画图绘制出原始数据和预测数据的结果图,并返回预测结果。

gm1n灰色预测模型matlab

灰色GM(1,N)模型是一种用于描述多个变量之间关系和发展的预测模型。该模型以自变量的发展动态为基础,将因变量表现为自变量的函数,以达到预测观察对象的目的。在MATLAB中,可以通过以下步骤实现该模型的预测: 1. 读取数据:使用xlsread函数读取数据文件,将需要预测的因变量存储为A,自变量存储为x0。 2. 紧邻均值生成序列:根据原始数据计算紧邻均值生成序列Z,其中Z(i)为xi(1)的紧邻均值。 3. 原始数据累加:使用双重循环将原始数据一次累加,得到xi(1)的值。 4. 构建GM(1,N)模型:根据公式建立GM(1,N)模型,其中a为常数项,b为参数向量。 5. 预测值计算:使用模型参数计算预测值F,其中F(k)为第k年的预测值。 6. 还原原序列:将预测值与前一年的预测值做差,得到还原原序列的预测数据G。 7. 绘制图表:使用plot函数将真实值和预测值绘制成曲线图,以展示预测结果。 下面是MATLAB代码示例: ```matlab clc; clear all; [num] = xlsread('C:\Users\Administrator\Desktop\G(1,n)\2011-2018 年地铁运营事故原因因素数据.xlsx')'; A = num(:, 1)'; x0 = num(:, 2:10)'; [n, m] = size(x0); AGO = cumsum(A); T = 1; x1 = zeros(n, m, T); for k = 2:m Z(k) = (AGO(k) - AGO(k-1)) / 2; end for i = 1:n for j = 1:m for k = 1:j x1(i, j) = x1(i, j) * x0(i, k); end end end x11 = x1(:, 1:m); X = x1(:, 2:m)'; Yn = A; Yn(1) = []; Yn = Yn'; Z = Z(:, 2:m); B = [-Z', X]; C = ((B' * B) \ (B' * Yn))'; a = C(1); b = C(:, 2:n-1); F = []; F(1) = A(1); u = zeros(1, m); for i = 1:m for j = 1:n u(i) = u(i) + (b(j) * x11(j, i)); end end for k = 2:m F(k) = (A(1) - u(k) / a) * exp(-a * (k-1)) + u(k) / a; end G = []; G(1) = A(1); for k = 2:m G(k) = F(k) - F(k-1); end t1 = 2011:2011+m-1; t2 = 2011:2011+m-1; plot(t1, A, 'bo--'); hold on; plot(t2, G, 'r*-'); title('G(1,N)预测结果'); xlabel('年份'); ylabel('事故数量'); legend('真实值', '预测值'); ``` 如果需要使用灰色GM(1,N)模型进行预测,可以按照上述步骤将数据导入MATLAB并运行代码即可。需要注意的是,根据具体需求,你可以根据自己的数据进行调整,以获得更准确的预测结果。

相关推荐

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、