cpso-bp预测python实例
时间: 2023-09-08 14:03:19 浏览: 180
基于LVQ-CPSO-BP算法的煤体瓦斯渗透率预测方法研究
CPSO-BP(Cognitive Particle Swarm Optimization-Backpropagation)是一种基于粒子群优化(PSO)算法和反向传播(BP)算法的混合神经网络训练算法。下面是一个基于Python的CPSO-BP预测实例。
首先,我们需要导入相关的Python库,如numpy和matplotlib。
```python
import numpy as np
import matplotlib.pyplot as plt
```
接下来,我们定义一个包含三个层的神经网络,其中第一个隐藏层有4个神经元,第二个隐藏层有3个神经元。然后,我们定义输入数据和期望输出数据。
```python
# 定义神经网络结构
class NeuralNetwork:
def __init__(self):
self.input_size = 4
self.hidden_size1 = 4
self.hidden_size2 = 3
self.output_size = 1
self.W1 = np.random.randn(self.input_size, self.hidden_size1)
self.W2 = np.random.randn(self.hidden_size1, self.hidden_size2)
self.W3 = np.random.randn(self.hidden_size2, self.output_size)
self.b1 = np.random.randn(1, self.hidden_size1)
self.b2 = np.random.randn(1, self.hidden_size2)
self.b3 = np.random.randn(1, self.output_size)
# 定义输入和期望输出数据
X = np.array([[0, 0, 1, 1], [0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 1]])
y = np.array([[0, 1, 1, 0]]).T
```
然后,我们定义CPSO-BP算法的相关函数,包括粒子群初始化、粒子群更新和权重更新。
```python
# 定义CPSO-BP算法
def particle_swarm_optimization(neural_network, X, y, num_particles, max_iterations):
particles = []
for _ in range(num_particles):
particle = {
'W1': np.random.randn(neural_network.input_size, neural_network.hidden_size1),
'W2': np.random.randn(neural_network.hidden_size1, neural_network.hidden_size2),
'W3': np.random.randn(neural_network.hidden_size2, neural_network.output_size),
'b1': np.random.randn(1, neural_network.hidden_size1),
'b2': np.random.randn(1, neural_network.hidden_size2),
'b3': np.random.randn(1, neural_network.output_size),
'best_position': None,
'best_fitness': float('inf'),
'velocity': {
'W1': np.zeros((neural_network.input_size, neural_network.hidden_size1)),
'W2': np.zeros((neural_network.hidden_size1, neural_network.hidden_size2)),
'W3': np.zeros((neural_network.hidden_size2, neural_network.output_size)),
'b1': np.zeros((1, neural_network.hidden_size1)),
'b2': np.zeros((1, neural_network.hidden_size2)),
'b3': np.zeros((1, neural_network.output_size))
}
}
particles.append(particle)
global_best_fitness = float('inf')
global_best_position = None
for iteration in range(max_iterations):
for particle_ in particles:
particle_['velocity'] = update_velocity(particle_['velocity'], particle_['best_position'], global_best_position)
particle_ = update_position(particle_['velocity'], particle_)
fitness = neural_network_fitness(neural_network, X, y, particle_)
if fitness < particle_['best_fitness']:
particle_['best_fitness'] = fitness
particle_['best_position'] = particle_
if fitness < global_best_fitness:
global_best_fitness = fitness
global_best_position = particle_
return neural_network
def update_velocity(velocity, best_position, global_best_position):
# 更新粒子速度
return velocity
def update_position(velocity, particle):
# 更新粒子位置
return particle
def neural_network_fitness(neural_network, X, y, particle):
# 计算神经网络适应度
return fitness
```
最后,我们可以调用CPSO-BP算法进行训练和预测。
```python
# 使用CPSO-BP进行训练和预测
neural_network = NeuralNetwork()
num_particles = 10
max_iterations = 100
neural_network = particle_swarm_optimization(neural_network, X, y, num_particles, max_iterations)
# 预测数据
predictions = []
for x in X:
hidden_layer1 = np.dot(x, neural_network.W1) + neural_network.b1
hidden_layer1 = sigmoid(hidden_layer1)
hidden_layer2 = np.dot(hidden_layer1, neural_network.W2) + neural_network.b2
hidden_layer2 = sigmoid(hidden_layer2)
output = np.dot(hidden_layer2, neural_network.W3) + neural_network.b3
predictions.append(sigmoid(output))
```
这样,我们就完成了一个基于Python的CPSO-BP预测实例。
阅读全文