onnx显示每个输入输出的shape

时间: 2023-09-14 18:04:20 浏览: 104
您可以使用以下代码来显示ONNX模型的每个输入和输出的形状: ```python import onnx model_path = "your_model.onnx" model = onnx.load(model_path) print("输入节点的形状:") for input in model.graph.input: print(input.name, input.type.tensor_type.shape) print("输出节点的形状:") for output in model.graph.output: print(output.name, output.type.tensor_type.shape) ``` 请将 `your_model.onnx` 替换为您的ONNX模型文件的路径。此代码将加载ONNX模型,并打印出每个输入和输出节点的名称和形状。 注意:这段代码仅适用于ONNX模型的情况,如果您使用的是其他深度学习框架(如TensorFlow或PyTorch),您需要使用相应的工具和代码来获取输入输出的形状。
相关问题

C#读取onnx每个节点的数据

要读取 ONNX 模型中每个节点的数据,可以使用 ONNX Runtime 库。以下是 C# 代码示例: ```csharp using System; using System.Collections.Generic; using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; class Program { static void Main(string[] args) { // Load the ONNX model var modelPath = "model.onnx"; var session = new InferenceSession(modelPath); // Get the input and output node names var inputName = session.InputMetadata.Keys.First(); var outputName = session.OutputMetadata.Keys.First(); // Prepare the input tensor var tensor = new DenseTensor<float>(new[] { 1, 3 }, new float[] { 1, 2, 3 }); // Run the inference var inputs = new List<NamedOnnxValue> { NamedOnnxValue.CreateFromTensor(inputName, tensor) }; var results = session.Run(inputs); // Print the output tensor shape and data var outputTensor = results.First().AsTensor<float>(); Console.WriteLine($"Output shape: {string.Join(",", outputTensor.Dimensions)}"); Console.WriteLine($"Output data: {string.Join(",", outputTensor.ToArray())}"); // Print the data for each node in the graph foreach (var node in session.Graph.Nodes) { var nodeOutputName = node.Outputs.First(); var nodeOutput = results.First(output => output.Name == nodeOutputName).AsTensor<float>(); Console.WriteLine($"Data for node {node.Name}: {string.Join(",", nodeOutput.ToArray())}"); } } } ``` 在上面的代码中,我们首先加载 ONNX 模型并获取输入和输出节点的名称。然后,我们准备输入张量并运行推理。最后,我们打印输出张量的形状和数据,并使用 foreach 循环遍历图中的每个节点并打印其输出数据。

yolov5 onnxruntime c++ 推理 onnx

首先,您需要将Yolov5模型转换为ONNX格式。您可以使用PyTorch将模型转换为ONNX格式,然后使用ONNX Runtime C++ API加载和运行模型。 以下是一些步骤: 1. 安装PyTorch和ONNX Runtime 2. 使用PyTorch将Yolov5模型转换为ONNX格式。您可以使用以下代码: ``` import torch import torchvision # Load the model model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) # Export the model to ONNX format input_shape = (1, 3, 640, 640) torch.onnx.export(model, torch.randn(*input_shape), "yolov5s.onnx", opset_version=11) ``` 3. 在C++中加载和运行模型。您可以使用以下代码: ``` #include <iostream> #include <vector> #include <chrono> #include <opencv2/opencv.hpp> #include "onnxruntime_cxx_api.h" using namespace std; using namespace cv; using namespace std::chrono; using namespace onnxruntime; int main() { // Load the model Ort::SessionOptions session_options; session_options.SetIntraOpNumThreads(1); session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test"); Ort::Session session(env, "yolov5s.onnx", session_options); // Get input and output names auto input_names = session.GetInputNames(); auto output_names = session.GetOutputNames(); // Create input tensor Ort::AllocatorWithDefaultOptions allocator; Ort::Value input_tensor(nullptr); Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); vector<int64_t> input_shape = {1, 3, 640, 640}; input_tensor = Ort::Value::CreateTensor<float>(memory_info, reinterpret_cast<float*>(new float[input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3]]), input_shape.data(), input_shape.size()); // Load image Mat image = imread("test.jpg"); cvtColor(image, image, COLOR_BGR2RGB); resize(image, image, Size(640, 640)); float* input_data = input_tensor.GetTensorMutableData<float>(); for (int i = 0; i < 640 * 640 * 3; i++) { input_data[i] = image.data[i] / 255.0; } // Run inference auto start = high_resolution_clock::now(); vector<Ort::Value> output_tensors = session.Run(output_names, &input_names[0], &input_tensor, 1); auto end = high_resolution_clock::now(); auto duration = duration_cast<milliseconds>(end - start); cout << "Inference time: " << duration.count() << " ms" << endl; // Get output tensor Ort::Value& output_tensor = output_tensors[0]; float* output_data = output_tensor.GetTensorMutableData<float>(); // Process output for (int i = 0; i < 25200; i++) { if (output_data[i * 6 + 4] > 0.5) { int x1 = output_data[i * 6 + 0] * 640; int y1 = output_data[i * 6 + 1] * 640; int x2 = output_data[i * 6 + 2] * 640; int y2 = output_data[i * 6 + 3] * 640; cout << "Object detected: " << output_data[i * 6 + 5] << " (" << x1 << ", " << y1 << ") (" << x2 << ", " << y2 << ")" << endl; } } return 0; } ``` 这个例子假设您有一张名为“test.jpg”的图像,它将被用作模型的输入。它还假设您的模型输出是一个大小为[1, 25200, 6]的张量,其中25200是预测的边界框数,6是每个边界框的属性数(左上角和右下角坐标,置信度和类别)。 请注意,这只是一个简单的例子,您需要根据您的模型和数据进行适当的修改。

相关推荐

class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def init(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().init() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.mi # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() 基于YOLOv5详细介绍这个程序

最新推荐

recommend-type

pytorch中获取模型input/output shape实例

今天小编就为大家分享一篇pytorch中获取模型input/output shape实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Android利用shape实现各种简单的形状

主要给大家介绍了关于Android中利用shape实现各种简单的形状的相关资料,文中给出了详细的示例代码供大家参考学习,需要的朋友们下面跟着小编一起来学习学习吧。
recommend-type

对numpy中shape的深入理解

今天小编就为大家分享一篇对numpy中shape的深入理解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Android使用shape绘制阴影图层阴影效果示例

本篇文章主要介绍了Android使用shape绘制阴影图层阴影效果示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

基于tf.shape(tensor)和tensor.shape()的区别说明

主要介绍了基于tf.shape(tensor)和tensor.shape()的区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。