请基于python环境帮我构建免疫遗传算法优化BP神经网络的框架
时间: 2023-09-16 11:11:20 浏览: 83
好的,我们可以使用Python的numpy库作为BP神经网络的基础,使用遗传算法对其进行优化,具体框架如下:
1. 定义BP神经网络的类,包括初始化网络、前向传播、反向传播、训练和预测等方法。
```
import numpy as np
class BPNeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.weights1 = np.random.randn(self.input_dim, self.hidden_dim)
self.weights2 = np.random.randn(self.hidden_dim, self.output_dim)
self.bias1 = np.random.randn(self.hidden_dim)
self.bias2 = np.random.randn(self.output_dim)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, x):
self.z1 = np.dot(x, self.weights1) + self.bias1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.weights2) + self.bias2
self.a2 = self.sigmoid(self.z2)
return self.a2
def backward(self, x, y, output):
self.delta2 = (y - output) * self.sigmoid_derivative(output)
self.weights2 += np.dot(self.a1.T, self.delta2)
self.bias2 += np.sum(self.delta2, axis=0)
self.delta1 = np.dot(self.delta2, self.weights2.T) * self.sigmoid_derivative(self.a1)
self.weights1 += np.dot(x.T, self.delta1)
self.bias1 += np.sum(self.delta1, axis=0)
def train(self, x, y):
output = self.forward(x)
self.backward(x, y, output)
def predict(self, x):
return self.forward(x)
```
2. 定义免疫遗传算法的类,包括初始化个体、种群、免疫操作、遗传操作、适应值评估和优化等方法。
```
import random
class ImmuneGA:
def __init__(self, pop_size, gene_size):
self.pop_size = pop_size
self.gene_size = gene_size
self.population = [[random.uniform(-1, 1) for _ in range(gene_size)] for _ in range(pop_size)]
self.fitness = [0] * pop_size
def mutation(self, gene):
return gene + random.uniform(-0.1, 0.1)
def immune_operation(self):
for i in range(self.pop_size):
for j in range(i + 1, self.pop_size):
if random.random() < 0.5:
for k in range(self.gene_size):
self.population[i][k], self.population[j][k] = self.population[j][k], self.population[i][k]
def crossover(self, parent1, parent2):
split_point = random.randint(0, self.gene_size - 1)
child1 = parent1[:split_point] + parent2[split_point:]
child2 = parent2[:split_point] + parent1[split_point:]
return child1, child2
def genetic_operation(self):
for i in range(self.pop_size):
parent1 = self.population[i]
parent2 = self.population[random.randint(0, self.pop_size - 1)]
child1, child2 = self.crossover(parent1, parent2)
self.population[i] = child1
self.population[random.randint(0, self.pop_size - 1)] = child2
def evaluate_fitness(self, x, y, bp_nn):
for i in range(self.pop_size):
bp_nn.weights1 = np.array(self.population[i][:bp_nn.input_dim * bp_nn.hidden_dim]).reshape(bp_nn.input_dim, bp_nn.hidden_dim)
bp_nn.weights2 = np.array(self.population[i][bp_nn.input_dim * bp_nn.hidden_dim:]).reshape(bp_nn.hidden_dim, bp_nn.output_dim)
output = bp_nn.forward(x)
error = np.sum(np.square(y - output))
self.fitness[i] = 1 / (1 + error)
def optimize(self, x, y, bp_nn, max_iter):
for i in range(max_iter):
self.evaluate_fitness(x, y, bp_nn)
self.immune_operation()
self.genetic_operation()
best_individual_index = self.fitness.index(max(self.fitness))
best_individual = self.population[best_individual_index]
bp_nn.weights1 = np.array(best_individual[:bp_nn.input_dim * bp_nn.hidden_dim]).reshape(bp_nn.input_dim, bp_nn.hidden_dim)
bp_nn.weights2 = np.array(best_individual[bp_nn.input_dim * bp_nn.hidden_dim:]).reshape(bp_nn.hidden_dim, bp_nn.output_dim)
```
3. 使用上述两个类进行BP神经网络的优化,代码如下:
```
input_dim = 2
hidden_dim = 5
output_dim = 1
x_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y_train = np.array([[0], [1], [1], [0]])
bp_nn = BPNeuralNetwork(input_dim, hidden_dim, output_dim)
ga = ImmuneGA(50, input_dim * hidden_dim + hidden_dim * output_dim)
ga.optimize(x_train, y_train, bp_nn, 200)
print(bp_nn.predict(x_train))
```
其中,我们使用一个简单的异或问题作为训练样本,通过免疫遗传算法对BP神经网络进行优化,最终输出了网络对训练样本的预测结果。
阅读全文