python遥感图像分类
时间: 2023-09-20 12:03:41 浏览: 90
遥感图像分类是利用计算机视觉技术对遥感图像进行自动分类的一种应用。Python是一种广泛使用的编程语言,也可以用来实现遥感图像分类。
下面是一个基本的遥感图像分类的Python程序:
1. 导入必要的库和模块
```python
import numpy as np
from osgeo import gdal
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
```
2. 读取遥感图像数据
```python
dataset = gdal.Open('image.tif')
cols = dataset.RasterXSize
rows = dataset.RasterYSize
bands = dataset.RasterCount
image = np.zeros((rows, cols, bands), dtype=np.float32)
for b in range(bands):
band = dataset.GetRasterBand(b+1)
image[:, :, b] = band.ReadAsArray()
```
3. 准备训练样本和测试样本
```python
samples = np.reshape(image, (rows*cols, bands))
labels = np.loadtxt('labels.txt')
train_samples, test_samples, train_labels, test_labels = train_test_split(samples, labels, test_size=0.3, random_state=0)
```
4. 训练分类器
```python
clf = RandomForestClassifier(n_estimators=100, random_state=0)
clf.fit(train_samples, train_labels)
```
5. 对测试样本进行预测
```python
predicted_labels = clf.predict(test_samples)
```
6. 计算分类精度
```python
accuracy = np.mean(predicted_labels == test_labels)
```
这是一个简单的遥感图像分类的Python程序。当然,根据不同的应用场景,还可以进行更加复杂的处理和分析。
阅读全文