[root@localhost melt]# mpirun -np 4 /zc/lammps-28Mar2023/lmp_mpi -in in.melt [proxy:0:0@localhost.localdomain] HYDU_create_process (lib/utils/launch.c:73): execvp error on file /zc/lammps-28Mar2023/lmp_mpi (No such file or directory) [proxy:0:0@localhost.localdomain] HYDU_create_process (lib/utils/launch.c:73): execvp error on file /zc/lammps-28Mar2023/lmp_mpi (No such file or directory) [proxy:0:0@localhost.localdomain] HYDU_create_process (lib/utils/launch.c:73): execvp error on file /zc/lammps-28Mar2023/lmp_mpi (No such file or directory) [proxy:0:0@localhost.localdomain] HYDU_create_process (lib/utils/launch.c:73): execvp error on file /zc/lammps-28Mar2023/lmp_mpi (No such file or directory)

时间: 2024-01-13 22:05:30 浏览: 34
这个错误提示显示LAMMPS程序仍然无法找到lmp_mpi文件,该文件在路径“/zc/lammps-28Mar2023/lmp_mpi”中。请再次检查该路径是否正确,并确保lmp_mpi文件确实位于该路径中。 如果lmp_mpi文件确实位于该路径中,请检查文件权限和文件是否完整。您可以使用以下命令检查文件权限: ``` ls -l /zc/lammps-28Mar2023/lmp_mpi ``` 如果权限不正确,您可以使用以下命令更改文件权限: ``` chmod +x /zc/lammps-28Mar2023/lmp_mpi ``` 如果文件不完整或损坏,您可以重新下载或复制该文件。 另外,请确保您正在使用正确版本的LAMMPS程序。如果您使用的是LAMMPS的旧版本,并且lmp_mpi文件是在新版本中添加的,则可能会导致LAMMPS程序无法找到该文件。请使用最新版本的LAMMPS程序。 如果您仍然无法解决问题,请提供更多详细信息,例如操作系统和软件版本,以便我们更好地帮助您。
相关问题

将https://www.kaggle.com/code/startupsci/titanic-data-science-solutions的python代码转换成R语言实现数据处理、可视化与建模过程

好的,我可以为您提供将该项目的Python代码转换为R语言代码的实现过程,以下是详细步骤: 1. 导入数据: Python代码: ```python train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') combine = [train_df, test_df] ``` R语言代码: ```R train_df <- read.csv("../input/titanic/train.csv", header = TRUE) test_df <- read.csv("../input/titanic/test.csv", header = TRUE) combine <- list(train_df, test_df) ``` 2. 数据清洗和特征工程: Python代码: ```python # 填充缺失值 for dataset in combine: dataset['Age'].fillna(dataset['Age'].median(), inplace=True) dataset['Embarked'].fillna(dataset['Embarked'].mode()[0], inplace=True) dataset['Fare'].fillna(dataset['Fare'].median(), inplace=True) # 将分类变量转换为数值变量 for dataset in combine: dataset['Sex'] = dataset['Sex'].map({'female': 1, 'male': 0}).astype(int) dataset['Embarked'] = dataset['Embarked'].map({'S': 0, 'C': 1, 'Q': 2}).astype(int) # 创建新特征 for dataset in combine: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 # 删除无用特征 drop_elements = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'SibSp', 'Parch', 'FamilySize'] train_df = train_df.drop(drop_elements, axis=1) test_df = test_df.drop(drop_elements, axis=1) ``` R语言代码: ```R # 填充缺失值 for (dataset in combine) { dataset$Age[is.na(dataset$Age)] <- median(dataset$Age, na.rm = TRUE) dataset$Embarked[is.na(dataset$Embarked)] <- names(which.max(table(dataset$Embarked))) dataset$Fare[is.na(dataset$Fare)] <- median(dataset$Fare, na.rm = TRUE) } # 将分类变量转换为数值变量 for (dataset in combine) { dataset$Sex <- as.integer(factor(dataset$Sex, levels = c("male", "female"))) dataset$Embarked <- as.integer(factor(dataset$Embarked, levels = c("S", "C", "Q"))) } # 创建新特征 for (dataset in combine) { dataset$FamilySize <- dataset$SibSp + dataset$Parch + 1 dataset$IsAlone <- 0 dataset$IsAlone[dataset$FamilySize == 1] <- 1 } # 删除无用特征 drop_elements <- c("PassengerId", "Name", "Ticket", "Cabin", "SibSp", "Parch", "FamilySize") train_df <- train_df[, !(names(train_df) %in% drop_elements)] test_df <- test_df[, !(names(test_df) %in% drop_elements)] ``` 3. 数据可视化: Python代码: ```python import matplotlib.pyplot as plt import seaborn as sns # 绘制直方图 sns.histplot(train_df['Age'], kde=False) plt.show() # 绘制条形图 sns.barplot(x='Sex', y='Survived', data=train_df) plt.show() # 绘制热力图 corr = train_df.corr() sns.heatmap(corr, annot=True, cmap='coolwarm') plt.show() ``` R语言代码: ```R library(ggplot2) library(reshape2) # 绘制直方图 ggplot(train_df, aes(x = Age)) + geom_histogram(binwidth = 5, fill = "lightblue", col = "black") + labs(title = "Age Distribution", x = "Age", y = "Count") # 绘制条形图 ggplot(train_df, aes(x = Sex, y = Survived, fill = factor(Sex))) + geom_bar(stat = "summary", fun = mean, position = "dodge") + scale_fill_manual(values = c("lightblue", "pink"), name = "Sex") + labs(title = "Survival Rate by Sex", x = "Sex", y = "Survival Rate") # 绘制热力图 cor_matrix <- cor(train_df) melted_cor_matrix <- melt(cor_matrix) ggplot(melted_cor_matrix, aes(x = Var1, y = Var2, fill = value)) + geom_tile() + scale_fill_gradient2(low = "lightblue", mid = "white", high = "pink") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title = "Correlation Matrix") ``` 4. 建立模型: Python代码: ```python from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier # 数据预处理 X_train = train_df.drop('Survived', axis=1) y_train = train_df['Survived'] X_test = test_df.drop('Survived', axis=1) # 逻辑回归模型 logreg = LogisticRegression() logreg_scores = cross_val_score(logreg, X_train, y_train, cv=10) print('Logistic Regression Accuracy: {:.2f}%'.format(logreg_scores.mean()*100)) # 随机森林模型 rf = RandomForestClassifier(n_estimators=100) rf_scores = cross_val_score(rf, X_train, y_train, cv=10) print('Random Forest Accuracy: {:.2f}%'.format(rf_scores.mean()*100)) ``` R语言代码: ```R library(caret) # 数据预处理 X_train <- train_df[, !(names(train_df) %in% c("Survived"))] y_train <- train_df$Survived X_test <- test_df[, !(names(test_df) %in% c("Survived"))] # 逻辑回归模型 logreg_model <- train(x = X_train, y = y_train, method = "glm", family = "binomial") logreg_scores <- logreg_model$results$Accuracy print(paste0("Logistic Regression Accuracy: ", round(mean(logreg_scores)*100, 2), "%")) # 随机森林模型 rf_model <- train(x = X_train, y = y_train, method = "rf", ntree = 100) rf_scores <- rf_model$results$Accuracy print(paste0("Random Forest Accuracy: ", round(mean(rf_scores)*100, 2), "%")) ``` 以上是将该项目的Python代码转换为R语言代码的过程,您可以在Kaggle的R语言环境中运行这段代码,完成数据处理、可视化和建模的过程。

lammps melt

LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)是一款功能强大的分子动力学模拟软件,可以用于模拟多种多样的系统,包括固体、液体和气体。其中,"melt"一词通常指的是将晶体物质转化为液体的过程。 在LAMMPS中,要模拟物质熔化的过程,需要以晶体结构作为起点,通过在模拟系统中引入足够的热能来破坏结晶体系的有序性,使其转变为液体。具体的过程如下: 首先,需要准备好描述系统的输入文件,包括原子类型、原子位置、晶格参数等。可以选择在LAMMPS自带的库中选择特定材料的晶体结构,或者自定义一个晶体结构。 其次,设置模拟条件,包括温度、压力和模拟时间等。对于熔化过程,温度是一个重要的参数,通常要将其设定为高于材料的熔点,以便提供足够的热能。 接下来,进行模拟运行。通过LAMMPS的分子动力学模拟算法,对系统中的原子进行运动的模拟。在模拟过程中,原子之间会相互作用,使得原子沿着分子动力学方程运动。 随着模拟的进行,原子将从原来的有序排列逐渐松散,相互之间的距离和角度也会发生变化。随着温度的升高,晶体结构中的键将逐渐断裂,原子将逐渐进入液态。 最后,当模拟运行足够长的时间,物质中的原子将脱离晶体结构,自由运动,完成熔化过程。可以通过观察模拟系统的总能量、原子位置等数据来判断模拟是否有效。 总的来说,通过LAMMPS进行物质的熔化模拟,可以获得系统中原子的位置、速度、能量等信息,进而研究材料的相变和液态性质。这对于理解和设计新型材料,以及研究材料的熔化过程具有重要意义。

相关推荐

最新推荐

recommend-type

子比主题ACG美化插件全开源

子比主题ACG美化插件[全开源] 不要改人家原作者版权,不要用于违法乱纪
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入了解MATLAB开根号的最新研究和应用:获取开根号领域的最新动态

![matlab开根号](https://www.mathworks.com/discovery/image-segmentation/_jcr_content/mainParsys3/discoverysubsection_1185333930/mainParsys3/image_copy.adapt.full.medium.jpg/1712813808277.jpg) # 1. MATLAB开根号的理论基础 开根号运算在数学和科学计算中无处不在。在MATLAB中,开根号可以通过多种函数实现,包括`sqrt()`和`nthroot()`。`sqrt()`函数用于计算正实数的平方根,而`nt
recommend-type

react的函数组件的使用

React 的函数组件是一种简单的组件类型,用于定义无状态或者只读组件。 它们通常接受一个 props 对象作为参数并返回一个 React 元素。 函数组件的优点是代码简洁、易于测试和重用,并且它们使 React 应用程序的性能更加出色。 您可以使用函数组件来呈现简单的 UI 组件,例如按钮、菜单、标签或其他部件。 您还可以将它们与 React 中的其他组件类型(如类组件或 Hooks)结合使用,以实现更复杂的 UI 交互和功能。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

解决MATLAB开根号常见问题:提供开根号运算的解决方案

![解决MATLAB开根号常见问题:提供开根号运算的解决方案](https://img-blog.csdnimg.cn/d939d1781acc404d8c826e8af207e68f.png) # 1. MATLAB开根号运算基础** MATLAB开根号运算用于计算一个数的平方根。其语法为: ``` y = sqrt(x) ``` 其中: * `x`:要开根号的数或数组 * `y`:开根号的结果 开根号运算的输入可以是实数、复数、矩阵或数组。对于实数,开根号运算返回一个非负实数。对于复数,开根号运算返回一个复数。对于矩阵或数组,开根号运算逐元素执行,对每个元素进行开根号运算。 #
recommend-type

inputstream

Inputstream是Java中用于从输入流中读取数据的抽象类,它是Java I/O类库中的一部分。Inputstream提供了read()和read(byte[] b)等方法,可以从输入流中读取一个字节或一组字节。在Java中,FileInputStream、ByteArrayInputStream和StringBufferInputStream都是Inputstream的子类,用于读取不同类型的输入流。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。