用python写出基于深度学习SAR图像目标识别算法代码
时间: 2023-08-10 10:18:06 浏览: 220
这里提供一个简单的基于Keras实现的SAR图像分类代码,使用的CNN模型为VGG16:
```python
import numpy as np
import os
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
# 定义VGG16模型
def VGG16():
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(128, 128, 1)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
return model
# 加载数据
def load_data():
train_data = np.load('train_data.npy')
train_label = np.load('train_label.npy')
test_data = np.load('test_data.npy')
test_label = np.load('test_label.npy')
return train_data, train_label, test_data, test_label
# 训练模型
def train_model(train_data, train_label, test_data, test_label):
model = VGG16()
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(train_data, train_label,
batch_size=32,
epochs=10,
verbose=1,
validation_data=(test_data, test_label),
shuffle=True)
return model
# 测试模型
def test_model(model, test_data, test_label):
score = model.evaluate(test_data, test_label, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
if __name__ == '__main__':
train_data, train_label, test_data, test_label = load_data()
model = train_model(train_data, train_label, test_data, test_label)
test_model(model, test_data, test_label)
```
需要注意的是,这里的数据应该是以NumPy数组形式保存的,可以通过`numpy.save()`和`numpy.load()`函数实现。数据应该是经过预处理的,例如进行归一化和零均值化等操作。在这个例子中,我们将SAR图像的大小统一调整为128x128,并将其转换为灰度图像(即单通道图像),所以输入数据的shape为(样本数, 128, 128, 1)。输出为二分类结果,所以输出数据的shape为(样本数, 1)。
阅读全文