详细解释一下这段代码,每一句给出详细注解:def matching_pipeline(matching_model, fnames, index_pairs, feature_dir): cache = {} with h5py.File(f"{feature_dir}/matches_{matching_name}.h5", mode='w') as f_match: for pair_idx in tqdm(index_pairs, desc='Get matched keypoints using matching model'): idx1, idx2 = pair_idx fname1, fname2 = fnames[idx1], fnames[idx2] key1, key2 = fname1.split('/')[-1], fname2.split('/')[-1] mkpts1, mkpts2, num_sg_matches = matching_inference(matching_model, fname1, fname2, cache) group = f_match.require_group(key1) if num_sg_matches >= n_matches: data = np.concatenate([mkpts1, mkpts2], axis=1) # data = np.vstack(list({tuple(row) for row in np.concatenate([mkpts1, mkpts2], axis=1).astype(np.int32)})).astype(np.float32) group.create_dataset(key2, data=data) kpts = defaultdict(list) total_kpts = defaultdict(int) match_indexes = defaultdict(dict) with h5py.File(f"{feature_dir}/matches_{matching_name}.h5", mode='r') as f_match: for k1 in f_match.keys(): group = f_match[k1] for k2 in group.keys(): matches = group[k2][...] total_kpts[k1] kpts[k1].append(matches[:, :2]) kpts[k2].append(matches[:, 2:]) current_match = torch.arange(len(matches)).reshape(-1, 1).repeat(1, 2) current_match[:, 0] += total_kpts[k1] current_match[:, 1] += total_kpts[k2] total_kpts[k1] += len(matches) total_kpts[k2] += len(matches) match_indexes[k1][k2] = current_match

时间: 2024-03-17 17:42:40 浏览: 15
这段代码是一个名为`matching_pipeline`的函数,其参数包括一个`matching_model`(匹配模型)、`fnames`(文件名列表)、`index_pairs`(索引对列表)和`feature_dir`(特征目录)。该函数的作用是使用指定的匹配模型对一组图像进行特征匹配,并将匹配结果保存到文件中。 具体注释如下: ```python def matching_pipeline(matching_model, fnames, index_pairs, feature_dir): cache = {} # 定义一个空字典,用于缓存特征 with h5py.File(f"{feature_dir}/matches_{matching_name}.h5", mode='w') as f_match: # 打开一个HDF5文件,用于保存匹配结果 for pair_idx in tqdm(index_pairs, desc='Get matched keypoints using matching model'): # 遍历索引对列表 idx1, idx2 = pair_idx fname1, fname2 = fnames[idx1], fnames[idx2] # 获取文件名 key1, key2 = fname1.split('/')[-1], fname2.split('/')[-1] # 获取键名 mkpts1, mkpts2, num_sg_matches = matching_inference(matching_model, fname1, fname2, cache) # 使用匹配模型进行特征匹配 group = f_match.require_group(key1) # 获取HDF5文件中名为key1的组,如果不存在则创建 if num_sg_matches >= n_matches: # 如果匹配点数大于等于指定的n_matches data = np.concatenate([mkpts1, mkpts2], axis=1) # 将匹配点的坐标沿水平方向拼接 group.create_dataset(key2, data=data) # 在名为key1的组中创建名为key2的数据集,并将匹配点坐标数据写入其中 kpts = defaultdict(list) # 定义一个默认字典,用于保存匹配点坐标 total_kpts = defaultdict(int) # 定义一个默认字典,用于保存每个图像中的匹配点总数 match_indexes = defaultdict(dict) # 定义一个默认字典,用于保存匹配点的索引 with h5py.File(f"{feature_dir}/matches_{matching_name}.h5", mode='r') as f_match: # 打开之前保存匹配结果的HDF5文件 for k1 in f_match.keys(): group = f_match[k1] for k2 in group.keys(): matches = group[k2][...] # 从HDF5文件中读取匹配点坐标数据 total_kpts[k1] # 获取名为k1的图像中的匹配点总数 kpts[k1].append(matches[:, :2]) # 将匹配点的第一列坐标(对应图像1)保存到kpts[k1]中 kpts[k2].append(matches[:, 2:]) # 将匹配点的第二列坐标(对应图像2)保存到kpts[k2]中 current_match = torch.arange(len(matches)).reshape(-1, 1).repeat(1, 2) # 生成当前匹配点的索引 current_match[:, 0] += total_kpts[k1] # 对应图像1的匹配点索引加上之前的匹配点总数 current_match[:, 1] += total_kpts[k2] # 对应图像2的匹配点索引加上之前的匹配点总数 total_kpts[k1] += len(matches) # 更新名为k1的图像中的匹配点总数 total_kpts[k2] += len(matches) # 更新名为k2的图像中的匹配点总数 match_indexes[k1][k2] = current_match # 保存当前匹配点的索引 ``` 总体来说,该函数的作用是将一组图像进行特征匹配,并将匹配结果保存到文件中,以便后续使用。其中使用了HDF5格式的文件来保存匹配结果和匹配点坐标。

相关推荐

详细解释一下这段代码,每一句给出详细注解:results_df = pd.DataFrame(columns=['image_path', 'dataset', 'scene', 'rotation_matrix', 'translation_vector']) for dataset_scene in tqdm(datasets_scenes, desc='Running pipeline'): dataset, scene = dataset_scene.split('/') img_dir = f"{INPUT_ROOT}/{'train' if DEBUG else 'test'}/{dataset}/{scene}/images" if not os.path.exists(img_dir): continue feature_dir = f"{DATA_ROOT}/featureout/{dataset}/{scene}" os.system(f"rm -rf {feature_dir}") os.makedirs(feature_dir) fnames = sorted(glob(f"{img_dir}/*")) print('fnames',len(fnames)) # Similarity pipeline if sim_th: index_pairs, h_w_exif = get_image_pairs_filtered(similarity_model, fnames=fnames, sim_th=sim_th, min_pairs=20, all_if_less=20) else: index_pairs, h_w_exif = get_img_pairs_all(fnames=fnames) # Matching pipeline matching_pipeline(matching_model=matching_model, fnames=fnames, index_pairs=index_pairs, feature_dir=feature_dir) # Colmap pipeline maps = colmap_pipeline(img_dir, feature_dir, h_w_exif=h_w_exif) # Postprocessing results = postprocessing(maps, dataset, scene) # Create submission for fname in fnames: image_id = '/'.join(fname.split('/')[-4:]) if image_id in results: R = results[image_id]['R'].reshape(-1) T = results[image_id]['t'].reshape(-1) else: R = np.eye(3).reshape(-1) T = np.zeros((3)) new_row = pd.DataFrame({'image_path': image_id, 'dataset': dataset, 'scene': scene, 'rotation_matrix': arr_to_str(R), 'translation_vector': arr_to_str(T)}, index=[0]) results_df = pd.concat([results_df, new_row]).reset_index(drop=True)

详细解释一下这段代码,每一句都要进行注解:def get_image_pairs_shortlist(fnames, sim_th = 0.6, # should be strict min_pairs = 20, exhaustive_if_less = 20, device=torch.device('cpu')): num_imgs = len(fnames) if num_imgs <= exhaustive_if_less: return get_img_pairs_exhaustive(fnames) model = timm.create_model('tf_efficientnet_b7', checkpoint_path='/kaggle/input/tf-efficientnet/pytorch/tf-efficientnet-b7/1/tf_efficientnet_b7_ra-6c08e654.pth') model.eval() descs = get_global_desc(fnames, model, device=device) #这段代码使用 PyTorch 中的 torch.cdist 函数计算两个矩阵之间的距离,其中参数 descs 是一个矩阵,表示一个数据集中的所有样本的特征向量。函数将计算两个矩阵的 p 范数距离,即对于矩阵 A 和 B,其 p 范数距离为: #dist_{i,j} = ||A_i - B_j||_p #其中 i 和 j 分别表示矩阵 A 和 B 中的第 i 和 j 行,||.||_p 表示 p 范数。函数的返回值是一个矩阵,表示所有样本之间的距离。 # detach() 和 cpu() 方法是为了将计算结果从 GPU 转移到 CPU 上,并将其转换为 NumPy 数组。最终的结果将会是一个 NumPy 数组。 dm = torch.cdist(descs, descs, p=2).detach().cpu().numpy() # removing half mask = dm <= sim_th total = 0 matching_list = [] ar = np.arange(num_imgs) already_there_set = [] for st_idx in range(num_imgs-1): mask_idx = mask[st_idx] to_match = ar[mask_idx] if len(to_match) < min_pairs: to_match = np.argsort(dm[st_idx])[:min_pairs] for idx in to_match: if st_idx == idx: continue if dm[st_idx, idx] < 1000: matching_list.append(tuple(sorted((st_idx, idx.item())))) total+=1 matching_list = sorted(list(set(matching_list))) return matching_list

最新推荐

recommend-type

Android模拟器安装APP出现INSTALL_FAILED_NO_MATCHING_ABIS错误解决方案

主要介绍了 Android模拟器安装APP出现INSTALL_FAILED_NO_MATCHING_ABIS错误解决方案的相关资料,需要的朋友可以参考下
recommend-type

软2一月考勤表-20230917-075457.xlsx

软2一月考勤表-20230917-075457.xlsx
recommend-type

node-v9.10.0-win-x86.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种