用c语言写遗传算法求tsp问题
时间: 2024-03-10 22:50:52 浏览: 73
以下是使用C语言实现遗传算法求解TSP问题的基本步骤:
1. 定义城市距离矩阵
```c
#define CITY_NUM 10 // 城市数量
int distance[CITY_NUM][CITY_NUM] = {
{0, 10, 20, 30, 40, 50, 60, 70, 80, 90},
{10, 0, 15, 25, 35, 45, 55, 65, 75, 85},
{20, 15, 0, 10, 50, 60, 70, 80, 90, 100},
{30, 25, 10, 0, 40, 50, 60, 70, 80, 90},
{40, 35, 50, 40, 0, 20, 30, 70, 80, 90},
{50, 45, 60, 50, 20, 0, 15, 65, 75, 85},
{60, 55, 70, 60, 30, 15, 0, 60, 70, 80},
{70, 65, 80, 70, 70, 65, 60, 0, 20, 30},
{80, 75, 90, 80, 80, 75, 70, 20, 0, 10},
{90, 85, 100, 90, 90, 85, 80, 30, 10, 0}
};
```
2. 定义个体结构体和种群结构体
```c
#define POPULATION_SIZE 100 // 种群大小
#define CHROMOSOME_LENGTH CITY_NUM // 基因长度
struct chromosome {
int genes[CHROMOSOME_LENGTH]; // 基因序列
int fitness; // 适应度值
};
struct population {
struct chromosome individuals[POPULATION_SIZE]; // 个体数组
int generation; // 当前代数
};
```
3. 初始化个体和种群
```c
void initialize_chromosome(struct chromosome *c) {
int i, j;
for (i = 0; i < CHROMOSOME_LENGTH; i++) {
c->genes[i] = i;
}
for (i = CHROMOSOME_LENGTH - 1; i >= 1; i--) {
j = rand() % (i + 1);
swap(&c->genes[i], &c->genes[j]);
}
c->fitness = 0;
}
void initialize_population(struct population *p) {
int i;
for (i = 0; i < POPULATION_SIZE; i++) {
initialize_chromosome(&p->individuals[i]);
}
p->generation = 0;
}
```
4. 计算个体适应度值
```c
int calculate_fitness(int *genes) {
int i, fitness = 0;
for (i = 0; i < CHROMOSOME_LENGTH - 1; i++) {
fitness += distance[genes[i]][genes[i+1]];
}
fitness += distance[genes[CHROMOSOME_LENGTH-1]][genes[0]];
return fitness;
}
void calculate_chromosome_fitness(struct chromosome *c) {
c->fitness = calculate_fitness(c->genes);
}
void calculate_population_fitness(struct population *p) {
int i;
for (i = 0; i < POPULATION_SIZE; i++) {
calculate_chromosome_fitness(&p->individuals[i]);
}
}
```
5. 选择操作
```c
void selection(struct population *p, struct chromosome *parents) {
int i, j, index1, index2;
for (i = 0; i < 2; i++) {
index1 = rand() % POPULATION_SIZE;
index2 = rand() % POPULATION_SIZE;
if (p->individuals[index1].fitness < p->individuals[index2].fitness) {
parents[i] = p->individuals[index1];
} else {
parents[i] = p->individuals[index2];
}
}
}
```
6. 交叉操作
```c
void crossover(struct chromosome *parent1, struct chromosome *parent2, struct chromosome *child) {
int i, j, k, start, end;
start = rand() % CHROMOSOME_LENGTH;
end = rand() % CHROMOSOME_LENGTH;
if (start > end) {
swap(&start, &end);
}
for (i = 0; i < CHROMOSOME_LENGTH; i++) {
child->genes[i] = -1;
}
for (i = start; i <= end; i++) {
child->genes[i] = parent1->genes[i];
}
k = 0;
for (i = 0; i < CHROMOSOME_LENGTH; i++) {
if (child->genes[i] == -1) {
while (k < CHROMOSOME_LENGTH) {
for (j = 0; j <= end - start; j++) {
if (parent2->genes[k] == child->genes[j+start]) {
break;
}
}
if (j > end - start) {
child->genes[i] = parent2->genes[k];
k++;
break;
}
k++;
}
}
}
}
```
7. 变异操作
```c
void mutation(struct chromosome *c) {
int i, j;
if (rand() % 100 < MUTATION_RATE) {
i = rand() % CHROMOSOME_LENGTH;
j = rand() % CHROMOSOME_LENGTH;
swap(&c->genes[i], &c->genes[j]);
}
}
```
8. 进化操作
```c
void evolve(struct population *p) {
struct chromosome parents[2], child;
int i, j;
for (i = 0; i < POPULATION_SIZE; i++) {
selection(p, parents);
crossover(&parents[0], &parents[1], &child);
mutation(&child);
calculate_chromosome_fitness(&child);
p->individuals[i] = child;
}
p->generation++;
}
```
9. 主函数
```c
int main() {
struct population p;
initialize_population(&p);
while (p.generation < MAX_GENERATION) {
calculate_population_fitness(&p);
evolve(&p);
}
printf("Best solution: ");
for (i = 0; i < CHROMOSOME_LENGTH; i++) {
printf("%d ", p.individuals[0].genes[i]);
}
printf("\nBest fitness: %d\n", p.individuals[0].fitness);
return 0;
}
```
以上是使用C语言实现遗传算法求解TSP问题的基本步骤,具体实现中还需要注意一些细节问题,比如交叉、变异操作的具体实现方式等。
阅读全文