cplex 使用遗传算法求解多目标规划模型代码
时间: 2023-09-05 15:07:40 浏览: 250
遗传算法是一种常用的优化算法,可以用于多目标规划模型的求解。而Cplex是一种商业化的数学优化软件,可以用于求解各种复杂的数学规划问题。下面是使用Cplex和遗传算法求解多目标规划模型的代码示例:
```
#include <ilcplex/ilocplex.h>
#include <ilcplex/cplex.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <ctime>
ILOSTLBEGIN
int main(int argc, char **argv) {
// 遗传算法相关参数
const int POP_SIZE = 50; // 种群大小
const int MAX_GEN = 100; // 最大迭代次数
const double CROSSOVER_RATE = 0.8; // 交叉概率
const double MUTATION_RATE = 0.1; // 变异概率
const int TOURNAMENT_SIZE = 5; // 锦标赛选择的大小
// 多目标规划模型相关参数
const int NUM_VAR = 2; // 决策变量个数
const int NUM_OBJ = 2; // 目标函数个数
// 初始化随机数生成器
srand((unsigned) time(NULL));
// 初始化Cplex环境
IloEnv env;
try {
// 定义决策变量
IloNumVarArray x(env, NUM_VAR, 0, 1, ILOBOOL);
// 定义目标函数
IloObjective obj(env);
obj.setSense(IloObjective::Minimize);
obj.setExpr(0.5 * x[0] + 0.5 * x[1]);
// 定义约束条件
IloRangeArray range(env);
range.add(x[0] + x[1] <= 1);
// 定义Cplex模型
IloModel model(env);
model.add(obj);
model.add(range);
// 定义Cplex求解器
IloCplex cplex(model);
// 定义遗传算法种群
std::vector<std::vector<int>> population;
for (int i = 0; i < POP_SIZE; i++) {
std::vector<int> chromosome;
for (int j = 0; j < NUM_VAR; j++) {
chromosome.push_back(rand() % 2);
}
population.push_back(chromosome);
}
// 迭代优化
for (int gen = 0; gen < MAX_GEN; gen++) {
// 计算适应度
std::vector<double> fitness;
for (int i = 0; i < POP_SIZE; i++) {
double obj1 = 0.5 * population[i][0] + 0.5 * population[i][1];
double obj2 = 1 - obj1;
fitness.push_back(obj1);
fitness.push_back(obj2);
}
// 选择操作
std::vector<std::vector<int>> newPopulation;
for (int i = 0; i < POP_SIZE; i++) {
std::vector<int> parent1, parent2;
for (int j = 0; j < TOURNAMENT_SIZE; j++) {
int index = rand() % POP_SIZE;
if (j == 0 || fitness[index * NUM_OBJ] > fitness[parent1[0] * NUM_OBJ]) {
parent1.clear();
parent1.push_back(index);
} else if (fitness[index * NUM_OBJ] == fitness[parent1[0] * NUM_OBJ]) {
parent1.push_back(index);
}
if (j == 0 || fitness[index * NUM_OBJ] > fitness[parent2[0] * NUM_OBJ]) {
parent2.clear();
parent2.push_back(index);
} else if (fitness[index * NUM_OBJ] == fitness[parent2[0] * NUM_OBJ]) {
parent2.push_back(index);
}
}
int crossoverPoint = rand() % (NUM_VAR - 1) + 1;
std::vector<int> offspring1, offspring2;
if ((double) rand() / RAND_MAX < CROSSOVER_RATE) {
for (int j = 0; j < crossoverPoint; j++) {
offspring1.push_back(population[parent1[rand() % parent1.size()]][j]);
offspring2.push_back(population[parent2[rand() % parent2.size()]][j]);
}
for (int j = crossoverPoint; j < NUM_VAR; j++) {
offspring1.push_back(population[parent2[rand() % parent2.size()]][j]);
offspring2.push_back(population[parent1[rand() % parent1.size()]][j]);
}
} else {
offspring1 = population[parent1[rand() % parent1.size()]];
offspring2 = population[parent2[rand() % parent2.size()]];
}
if ((double) rand() / RAND_MAX < MUTATION_RATE) {
int mutationPoint = rand() % NUM_VAR;
offspring1[mutationPoint] = 1 - offspring1[mutationPoint];
}
if ((double) rand() / RAND_MAX < MUTATION_RATE) {
int mutationPoint = rand() % NUM_VAR;
offspring2[mutationPoint] = 1 - offspring2[mutationPoint];
}
newPopulation.push_back(offspring1);
newPopulation.push_back(offspring2);
}
// 更新种群
population = newPopulation;
// 输出迭代结果
std::cout << "Generation " << gen + 1 << ":" << std::endl;
for (int i = 0; i < POP_SIZE; i++) {
std::cout << " ";
for (int j = 0; j < NUM_VAR; j++) {
std::cout << population[i][j] << " ";
}
std::cout << "-> ";
cplex.setParam(IloCplex::Param::Emphasis::Objective, 1);
cplex.setOut(env.getNullStream());
cplex.solve();
std::cout << "Obj1 = " << cplex.getObjValue() << ", Obj2 = " << 1 - cplex.getObjValue() << std::endl;
}
}
// 释放Cplex资源
cplex.end();
model.end();
range.end();
obj.end();
x.end();
} catch (IloException &e) {
std::cerr << "Concert exception caught: " << e << std::endl;
} catch (...) {
std::cerr << "Unknown exception caught" << std::endl;
}
// 释放Cplex环境
env.end();
return 0;
}
```
注:以上代码仅为示例,可能存在语法错误或逻辑错误,仅供参考和学习。
阅读全文