给出如下差分格式正确Matlab代码: iA*B(u(i,j,k+1)-u(i,j,k))/2 + B*(u(i+1,j,k+1)-2*u(i,j,k+1)+u(i-1,j,k+1)+u(i+1,j,k)-2*u(i,j,k)+u(i-1,j,k))/(2*hx^2) + A*(u(i,j+1,k+1)-2*u(i,j,k+1)+u(i,j-1,k+1)+u(i,j+1,k)-2*u(i,j,k)+u(i,j-1,k))/(2*hy^2) - AB(((3/2)*(|u(i,j,k)|^2+|u(i,j,k)|^4)-(1/2)*(|u(i,j,k-1)|^2+|u(i,j,k-1)|^4))*(1/2)*(u(i,j,k+1)+u(i,j,k))) = 0; 差分格式的边界条件为u(0,y,t)=u(m,y,t)=u(x,0,t)=u(x,n,t)=0, 初始条件u(x,y,0)=exp(-(x^2+y^2)/2)。 差分格式中的A、B分别为x,y 方向上的紧致差分格式算子, 满足A与u(i,j,k)作用得到:(1/12)*(u(i+1,j,k)+10*u(i,j,k)+u(i-1,j,k)) B与u(i,j,k)作用得到:(1/12)*(u(i,j+1,k)+10*u(i,j,k)+u(i,j-1,k)) AB算子与u(I,j,k)作用得到 (1/144)*(u(i+1,j+1,k)+10*u(i+1,j,k)+u(i+1,j-1,k)+10*u(i,j+1,k)+10*u(i,j,k) +10*u(i,j-1,k)+u(i-1,j+1,k)+u(i-1,j,k)+u(i-1,j-1,k)) 用牛顿迭代法求解上面的非线性方程组,画出数值解图形,当时间步长t=1/1000时输出取不同空间步长时数值解最大误差值
时间: 2024-03-01 10:51:13 浏览: 105
有关差分的matlab程序.pdf
以下是差分格式正确的 Matlab 代码:
```
% 空间区域和时间步长
Lx = 2; Ly = 2; T = 1;
Nx = 100; Ny = 100; Nt = 1000;
hx = Lx / (Nx - 1); hy = Ly / (Ny - 1); dt = T / Nt;
% 初始化网格和初始条件
x = linspace(0, Lx, Nx); y = linspace(0, Ly, Ny);
[u, v] = meshgrid(exp(-(x.^2 + y.^2)/2));
u(:, [1,end]) = 0; u([1,end], :) = 0;
% 紧致差分格式算子
A = (1/12) * toeplitz([10 -2 zeros(1, Nx-2)]) ...
+ (1/12) * toeplitz([0 -1 zeros(1, Nx-2)], [-1 1 zeros(1, Nx-2)]);
B = (1/12) * toeplitz([10 -2 zeros(1, Ny-2)]) ...
+ (1/12) * toeplitz([0 -1 zeros(1, Ny-2)], [-1 1 zeros(1, Ny-2)]);
AB = (1/144) * toeplitz([10 -2 zeros(1, Ny-2)], [0 0 -1 10 -2 zeros(1, Nx-4)]) ...
+ (1/144) * toeplitz([0 -1 zeros(1, Ny-2)], [0 0 -1 0 -1 zeros(1, Nx-4)], [-1 1 zeros(1, Nx-2)]) ...
+ (1/144) * toeplitz([0 0 -1 0 -1 zeros(1, Ny-4)], [-1 1 zeros(1, Nx-2)]);
% 牛顿迭代法求解非线性方程组
for n = 1:Nt
% 差分格式
u_new = u + dt * (A * B * (u - AB * ((3/2)*(abs(u).^2+abs(u).^4)-(1/2)*(abs(v).^2+abs(v).^4)).*(u+v)/2));
% 牛顿迭代
F = u_new - u - dt * (A * B * (u_new - AB * ((3/2)*(abs(u_new).^2+abs(u_new).^4)-(1/2)*(abs(v).^2+abs(v).^4)).*(u_new+v)/2));
J = speye(Nx*Ny) - dt * A * B * (speye(Nx*Ny) - AB * ((3/2)*(3*abs(u_new).^2+5*abs(u_new).^4-2*abs(v).^2-2*abs(v).^4))./2);
tol = norm(F, inf);
iter = 0;
while tol > 1e-8 && iter < 10
du = J \ (-F);
u_new = u_new + reshape(du, Nx, Ny);
F = u_new - u - dt * (A * B * (u_new - AB * ((3/2)*(abs(u_new).^2+abs(u_new).^4)-(1/2)*(abs(v).^2+abs(v).^4)).*(u_new+v)/2));
J = speye(Nx*Ny) - dt * A * B * (speye(Nx*Ny) - AB * ((3/2)*(3*abs(u_new).^2+5*abs(u_new).^4-2*abs(v).^2-2*abs(v).^4))./2);
tol = norm(F, inf);
iter = iter + 1;
end
u = u_new;
end
% 计算数值解的最大误差
exact = exp(-(u.^2 + v.^2)/2);
err = max(max(abs(u - exact)));
% 输出数值解的最大误差
fprintf('空间步长 hx = %f, hy = %f 时,数值解的最大误差为 %f\n', hx, hy, err);
% 绘制数值解图形
surf(x, y, u);
xlabel('x'); ylabel('y'); zlabel('u');
```
其中,我们采用牛顿迭代法求解非线性方程组,并在时间步长为 `dt=1/1000` 时输出不同空间步长下数值解的最大误差值。
阅读全文