帮我写一个基于深度学习的数字识别的pychram代码
时间: 2023-08-28 10:36:53 浏览: 101
好的,以下是一个基于深度学习的数字识别的 PyCharm 代码:
首先,需要导入必要的库:
```
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
```
接着,准备训练数据和测试数据,这里我们使用 keras 内置的 mnist 数据集:
```
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
```
对数据进行预处理,将像素值缩放到 0-1 之间:
```
train_images = train_images / 255.0
test_images = test_images / 255.0
```
建立模型,这里我们使用一个简单的深度学习模型,包含两个卷积层和两个全连接层:
```
model = keras.Sequential([
keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
keras.layers.MaxPooling2D((2,2)),
keras.layers.Conv2D(64, (3,3), activation='relu'),
keras.layers.MaxPooling2D((2,2)),
keras.layers.Flatten(),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(10)
])
```
编译模型,设置损失函数和优化器:
```
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
```
训练模型:
```
model.fit(train_images, train_labels, epochs=5)
```
评估模型:
```
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)
```
最后,使用模型进行预测:
```
predictions = model.predict(test_images)
```
完整代码如下:
```
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images / 255.0
test_images = test_images / 255.0
model = keras.Sequential([
keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
keras.layers.MaxPooling2D((2,2)),
keras.layers.Conv2D(64, (3,3), activation='relu'),
keras.layers.MaxPooling2D((2,2)),
keras.layers.Flatten(),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)
predictions = model.predict(test_images)
```
阅读全文