使用Kirkpatrick-Seidel 算法判断平面图的python代码

时间: 2023-02-12 13:02:22 浏览: 96
Kirkpatrick-Seidel算法是一种用于判断平面图是否可三分的算法。在python中,可以使用networkx库来实现该算法。以下是一个简单的python代码示例: ```python import networkx as nx def is_planar(G): try: nx.planar_layout(G) return True except nx.NetworkXException: return False ``` 使用方法: ```python G = nx.Graph() # 添加边 G.add_edge(1, 2) G.add_edge(2, 3) G.add_edge(3, 1) print(is_planar(G)) ``` 这个代码简单的实现了 Kirkpatrick-Seidel 算法,返回True表示可以三分,返回False表示不能三分。
相关问题

python实现平面图的判定算法代码?

### 回答1: 这可能需要根据具体情况来编写代码,但通常可以使用计算几何算法来判断平面图。 以下是一个简单的示例,使用 Graham 算法来判断给定的点是否在凸包内: ```python from functools import cmp_to_key def cross(p1, p2, p3): return (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]) def is_convex(points): n = len(points) if n < 3: return False # 按极角排序 points.sort(key=cmp_to_key(lambda p1, p2: p1[0] - p2[0] if p1[0] != p2[0] else p1[1] - p2[1])) # 判断顺时针或逆时针 clockwise = True if cross(points[0], points[1], points[2]) > 0 else False for i in range(n): j = (i + 1) % n k = (i + 2) % n if clockwise != (cross(points[i], points[j], points[k]) > 0): return False return True ``` 上面的代码中,points 是一个点的列表,每个点都是一个二元组(x,y)。 这仅仅是一个简单的例子,你还可以使用其他算法(如 Jarvis 算法,Kirkpatrick-Seidel 算法等)来判断平面图。 ### 回答2: 平面图是指在平面上可以画出的图,使得图中的边不会相交。判定一个图是否为平面图的一个常用算法是Kuratowski定理。基于这一定理,我们可以编写Python代码来实现平面图的判定算法。 以下是一个简单的Python函数,用于判定输入的图是否为平面图: ``` def is_planar(graph): for v1 in graph: for v2 in graph[v1]: for v3 in graph[v1]: if v3 != v1 and v3 != v2: for v4 in graph[v2]: if v4 != v1 and v4 != v2: if v4 in graph[v3]: return False return True ``` 在这个函数中,`graph`是一个以顶点为键,以与该顶点相邻的顶点列表为值的字典。函数使用了四个嵌套的循环来遍历所有的顶点和边,并检查是否存在边相交的情况。 我们可以通过调用这个函数来检验一个图是否为平面图。例如,我们可以使用以下代码来检验一个简单的无向图是否为平面图: ``` graph = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D'], 'C': ['A', 'D'], 'D': ['A', 'B', 'C'] } if is_planar(graph): print("这个图是平面图") else: print("这个图不是平面图") ``` 上面的代码中,我们定义了一个由四个顶点A、B、C和D以及它们之间的边构成的图。我们调用了`is_planar`函数来判定这个图是否为平面图,并打印相应的结果。 需要注意的是,上述的实现只是基于Kuratowski定理的一个简单实现,并不能解决所有情况。因此,在实际应用中,可能需要使用更复杂的算法来判定平面图。 ### 回答3: 平面图是指能够在平面上绘制的图形,其中边不会交叉。判断一个图是否是平面图的算法有很多种,下面是一种基于图的遍历算法的Python实现示例。 ```python # 判断一个图是否是平面图的算法 def is_planar(graph): # 使用DFS遍历图的节点,判断是否有交叉边 def dfs(node, visited, parent): visited[node] = True for neighbor in graph[node]: if not visited[neighbor]: if dfs(neighbor, visited, node): return True elif neighbor != parent: return True return False # 初始化图的访问状态 visited = {node: False for node in graph} # 遍历图的每个节点,判断是否有交叉边 for node in graph: if not visited[node]: if dfs(node, visited, None): return False return True ``` 以上代码中,`graph`是一个以节点为键,邻居节点列表为值的字典,表示图的邻接关系。`is_planar`函数使用DFS遍历图的节点,并使用`visited`字典记录每个节点的访问状态,`parent`参数用于判断是否存在交叉边。如果最终发现有交叉边存在,函数返回`False`,否则返回`True`。 使用该代码可以判断一个图是否是平面图。

模拟退火算法python应用

模拟退火算法是一种优化算法,可以用于求解组合优化问题。它的基本思想是模拟热力学中的退火过程,通过在搜索空间中随机选择解,并以一定的概率接受较差的解,以避免陷入局部最优解。模拟退火算法最初由Metropolis等人于1953年提出,但直到1983年Kirkpatrick等人将其应用于组合优化问题后,才得到广泛应用。 在Python中,可以使用模拟退火算法来解决各种优化问题。以下是模拟退火算法的应用步骤及Python实现的示例: 1. 定义问题:明确优化问题,确定目标函数和约束条件。 2. 初始化参数:设置初始解和初始温度。 3. 生成新解:通过某种策略在当前解的邻域中生成新的解。 4. 计算目标函数:计算新解的目标函数值。 5. 比较新旧解:根据一定的准则,决定是否接受新解。 6. 降低温度:根据设定的降温规则降低温度。 7. 终止条件判断:根据设定的终止条件,判断是否终止搜索。 8. 迭代更新:根据上述步骤迭代更新解,直到满足终止条件。 以下是一个简单的模拟退火算法的Python实现示例: ```python import random import math def simulated_annealing(initial_solution, initial_temperature, cooling_rate): current_solution = initial_solution temperature = initial_temperature while temperature > 0.1: new_solution = generate_new_solution(current_solution) current_cost = calculate_cost(current_solution) new_cost = calculate_cost(new_solution) if new_cost < current_cost: current_solution = new_solution else: probability = math.exp((current_cost - new_cost) / temperature) if random.random() < probability: current_solution = new_solution temperature *= cooling_rate return current_solution def generate_new_solution(current_solution): # 生成新解的方法,可以根据具体问题进行定义 pass def calculate_cost(solution): # 计算目标函数值的方法,可以根据具体问题进行定义 pass # 示例问题的初始解和参数 initial_solution = ... initial_temperature = ... cooling_rate = ... # 调用模拟退火算法求解问题 solution = simulated_annealing(initial_solution, initial_temperature, cooling_rate) ``` 以上是一个简单的模拟退火算法的Python实现示例,你可以根据具体的问题进行相应的修改和优化。

相关推荐

最新推荐

recommend-type

模拟退火算法 sa ppt

模拟退火算法是一种源自物理退火过程的随机优化算法,由Metropolis等人在1953年提出,并在1983年由Kirkpatrick等人引入到组合优化领域。该算法的主要目标是解决NP复杂性问题,避免陷入局部最优解,以及减轻对初始...
recommend-type

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip 本项目是一个仿QQ基本功能的前后端分离项目。前端采用了vue.js技术栈,后端采用springboot+netty混合开发。实现了好友申请、好友分组、好友聊天、群管理、群公告、用户群聊等功能。 后端技术栈 1. Spring Boot 2. netty nio 3. WebSocket 4. MyBatis 5. Spring Data JPA 6. Redis 7. MySQL 8. Spring Session 9. Alibaba Druid 10. Gradle #### 前端技术栈 1. Vue 3. axios 4. vue-router 5. Vuex 6. WebSocket 7. vue-cli4 8. JavaScript ES6 9. npm 【说明】 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领
recommend-type

wx293儿童预防接种预约小程序-springboot+vue+uniapp.zip(可运行源码+sql文件+文档)

本儿童预防接种预约微信小程序可以实现管理员和用户。管理员功能有个人中心,用户管理,儿童信息管理,疫苗信息管理,儿童接种管理,儿童接种史管理,医疗机构管理,预约接种管理,系统管理等。用户功能有注册登录,儿童信息,疫苗信息,儿童接种,儿童接种史,医疗机构,预约接种,我的收藏管理等。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得医院挂号信息管理工作系统化、规范化。 管理员可以管理用户信息,可以对用户信息进行添加删除修改操作。管理员可以对儿童信息进行添加,查询修改,删除操作。系统管理员可以管理疫苗信息。系统管理员可以添加,修改,删除儿童接种史。 小程序患者是需要注册才可以进行登录的。在小程序里点击我的,会出现关于我的界面,在这里可以修改个人信息,以及可以点击其他功能模块。用户可以提交儿童接种预约信息。
recommend-type

2010-2022年 ESG的同群效应().zip

ESG是英文 Environmental(环境)、Social(社会)和Governance(治理)的缩写,是关注企业环境、社会、治理绩效的可持续发展理念和价值观。它并非一种新的投资策略,而是一种关注企业非财务绩效的投资理念。 同群效应,顾名思义,是指企业在环境、社会和治理方面会受到同行业、同类型企业的影响。这种影响可能是正向的,也可能是负向的。企业要善于观察和学习同行业、同类型企业的优秀实践经验,同时也要警惕潜在的负面影响,并采取措施规避风险。 相关数据指标 股票代码 、年份、行业代码、行政区划代码、ESG、E、S、G、同行业同群-ESG_均值、同行业同群-ESG_中位数、同省份同群-ESG_均值、同省份同群-ESG_中位数、同行业同群-E_均值、同行业同群-E_中位数、同省份同群-E_均值、同省份同群-E_中位数、同行业同群-S_均值、同行业同群-S_中位数、同省份同群-S_均值、同省份同群-S_中位数、同行业同群-G_均值、同行业同群-G_中位数、同省份同群-G_均值、同省份同群-G_中位数。
recommend-type

大学生求职就业网.zip

大学生求职就业网.zip
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。