解释一下这段代码:def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*100, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) train_db = tf.data.Dataset.from_tensor_slices((train_image1, (train_label1, train_label2))).batch(128) test_db = tf.data.Dataset.from_tensor_slices((test_image1, (test_label1, test_label2))).batch(128)
时间: 2024-04-26 08:25:46 浏览: 177
这段代码定义了一个物理损失函数"phsical_loss",该损失函数是由三个部分组成的:实部的均方误差损失、虚部的均方误差损失和振幅的均方误差损失。其中,y_true代表真实值,y_pred代表预测值,tf.cast函数用于将y_true的数据类型转换为y_pred的数据类型。在该函数中,首先计算了实部和虚部的均方误差损失,然后分别计算了真实值和预测值的振幅,并计算了振幅的均方误差损失,最后将三部分损失相加作为总的损失。物理损失函数常用于处理物理问题的预测,例如电磁场预测、声波预测等。
接下来,代码定义了两个ResNet18模型,分别用于处理输入数据的实部和虚部。然后,使用一个输入模型和两个输出模型构建了一个完整的模型"model_all",该模型的输入为一个16x16的灰度图像,输出为两个16x16的实部和虚部矩阵。模型的损失函数为上文定义的物理损失函数"phsical_loss",优化器为Adam优化器,并使用学习率衰减策略。模型在训练过程中,每128个样本为一批次进行训练,训练数据为train_image1和(train_label1, train_label2),测试数据为test_image1和(test_label1, test_label2)。最后,代码检查是否存在预训练模型的权重文件,如果存在则加载该文件。
相关问题
详细解释这段代码:def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 def angle_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) img_ture=tf.atan2(y_true[1],y_true[0]) img_pred=tf.atan2(y_pred[1],y_pred[0]) return tf.keras.losses.MAE(img_ture,img_pred) def amp_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_phsical=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_phsical model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*25, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True,save_best_only=True)
这段代码定义了三个损失函数:physical_loss、angle_loss和amp_loss,用于训练一个模型,该模型将一个 16x16 的单通道图像作为输入,并输出两个通道的复数值,其中一个通道表示实部,另一个通道表示虚部。
physical_loss 函数计算了三个子损失:实部误差、虚部误差和振幅误差。在计算实部误差和虚部误差时,使用了均方误差(MSE)作为损失函数。在计算振幅误差时,先分别计算出真实值和预测值的振幅,然后同样使用 MSE 作为损失函数。最终的损失是三个子损失的和。
angle_loss 函数计算了一个角度误差,用于约束模型输出的复数值的相位信息。在计算角度误差时,先计算出真实值和预测值的相位角,然后使用平均绝对误差(MAE)作为损失函数。
amp_loss 函数计算了一个振幅误差,用于约束模型输出的复数值的振幅信息。在计算振幅误差时,先分别计算出真实值和预测值的振幅,然后同样使用 MSE 作为损失函数。
接下来,定义了一个输入层 model_in,以及两个输出层 model_real_out 和 model_img_out,它们都使用了 ResNet18 网络结构,分别处理输入图像的实部和虚部。然后,定义了一个完整的模型 model_all,将输入层和两个输出层组合在一起。最后,使用 physical_loss 作为损失函数、Adam 优化器和学习率衰减策略(InverseTimeDecay)对模型进行编译。
在训练模型时,使用了 ModelCheckpoint 回调函数,用于保存模型的权重,并在每个 epoch 结束时评估模型的性能。如果已经存在保存的权重,则加载它们以继续训练模型。
解释以下这段代码:import tensorflow as tf gpus =tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_virtual_device_configuration(gpus[0],[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) #import scipy.io as sio import pickle import os,random import matplotlib.pyplot as plt #import scipy.stats from tensorflow import losses from tensorflow.keras import Model from tensorflow.keras import layers import matplotlib.pyplot as plt import tensorflow as tf import numpy as np #import scipy.io as sio #import scipy.stats import math import os import pdb from tensorflow import losses from model import ResNet18 from re_dataset_real import train_image1,train_label1,test_image1,test_label1,val_image1,val_label1 from re_dataset_imag import train_image2,train_label2,test_image2,test_label2,val_image2,val_label2 def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 def angle_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) img_ture=tf.atan2(y_true[1],y_true[0]) img_pred=tf.atan2(y_pred[1],y_pred[0]) return tf.keras.losses.MAE(img_ture,img_pred) def amp_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_phsical=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_phsical model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*25, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True,save_best_only=True)
这段代码主要是实现了一个包含两个子模型的神经网络,其中每个子模型都是由 ResNet18 构成的。此外,还定义了三个损失函数 phsical_loss、angle_loss 和 amp_loss,分别用于计算物理约束、角度约束和幅度约束。其中,物理约束的损失函数 phsical_loss 是由子模型输出的实数和虚数部分的均方误差以及模长的均方误差之和。角度约束的损失函数 angle_loss 是由子模型输出的实数和虚数部分的反正切值的平均绝对误差。幅度约束的损失函数 amp_loss 是由子模型输出的模长的均方误差。最后,使用 Adam 优化器和学习率的反比时间衰减策略来编译模型,并且设置了 ModelCheckpoint 回调函数用于保存最优模型。
阅读全文