用pytorch实现一下基于策略梯度下降的深度强化学习算法
时间: 2023-09-08 22:15:19 浏览: 130
基于Pytorch实现深度强化学习各种算法python源码+算法介绍(DQN、Q-Learning、Sarsa等14种).zip
5星 · 资源好评率100%
好的,下面是一个基于策略梯度下降的深度强化学习算法的PyTorch实现。
首先我们需要导入相关的包和定义一些超参数:
```python
import gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 超参数
learning_rate = 0.01
gamma = 0.99
hidden_layer = 128
batch_size = 32
episodes = 1000
render = False
```
接下来,我们需要定义一个神经网络来估计策略。这里我们使用一个简单的全连接神经网络,输入是状态向量,输出是动作的概率分布。
```python
class Policy(nn.Module):
def __init__(self, input_dim, output_dim, hidden_layer=128):
super(Policy, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_layer)
self.fc2 = nn.Linear(hidden_layer, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.softmax(self.fc2(x), dim=1)
return x
```
接下来,我们定义一些函数来计算策略梯度和更新策略。
```python
def compute_policy_gradient(policy, rewards, states, actions):
# 计算策略梯度
R = 0
policy_gradient = []
for r in rewards[::-1]:
R = r + gamma * R
policy_gradient.insert(0, -R)
policy_gradient = torch.tensor(policy_gradient)
policy_gradient = (policy_gradient - policy_gradient.mean()) / (policy_gradient.std() + 1e-9)
# 计算动作概率分布
states = torch.tensor(states, dtype=torch.float32)
action_probs = policy(states)
dist = torch.distributions.Categorical(action_probs)
# 计算策略梯度乘以动作概率
actions = torch.tensor(actions)
log_probs = dist.log_prob(actions)
policy_gradient *= log_probs.exp()
return policy_gradient
def update_policy(policy, optimizer, policy_gradient):
# 更新策略
optimizer.zero_grad()
policy_gradient.mean().backward()
optimizer.step()
```
最后,我们定义主函数来运行整个强化学习算法。在每个回合结束后,我们先计算策略梯度,然后用策略梯度更新策略。
```python
if __name__ == '__main__':
# 初始化环境和策略
env = gym.make('CartPole-v0')
policy = Policy(env.observation_space.shape[0], env.action_space.n, hidden_layer=hidden_layer)
optimizer = optim.Adam(policy.parameters(), lr=learning_rate)
# 训练策略
for episode in range(episodes):
# 初始化回合
state = env.reset()
done = False
rewards = []
states = []
actions = []
# 运行回合
while not done:
if render:
env.render()
# 选择动作
state = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
action_probs = policy(state)
dist = torch.distributions.Categorical(action_probs)
action = dist.sample().item()
# 执行动作
next_state, reward, done, _ = env.step(action)
# 存储数据
states.append(state)
actions.append(action)
rewards.append(reward)
# 更新状态
state = next_state
# 计算策略梯度并更新策略
policy_gradient = compute_policy_gradient(policy, rewards, states, actions)
update_policy(policy, optimizer, policy_gradient)
# 打印训练进度
if episode % 10 == 0:
print(f'Episode {episode}/{episodes}')
env.close()
```
这样我们就完成了基于策略梯度下降的深度强化学习算法的PyTorch实现。您可以根据实际情况调整超参数和神经网络结构来获得更好的性能。
阅读全文