pad_packed_sequence(sequence = output_packed, batch_first = True, padding_value=self.config.pad_idx, total_length = seq_lens.max())
时间: 2024-02-10 15:05:27 浏览: 107
这段代码是什么意思?
这段代码是将经过PackedSequence打包的RNN的输出进行解包,返回一个元组(output, lengths),其中output是解包后的输出张量,lengths是一个包含每个序列的实际长度的张量。其中,sequence是经过PackedSequence打包后的张量,batch_first表示是否将batch_size放在第一维,padding_value表示填充的值,total_length表示序列的总长度,seq_lens.max()表示序列中最长的长度。
相关问题
def forward(self, text): non_padded_position = text != self.pad_idx lens = non_padded_position.sum(dim=1) # 获取词向量 inputs_emb = self.embedding(text) packed_embedded = nn.utils.rnn.pack_padded_sequence(inputs_emb, lens.cpu(), batch_first=True, enforce_sorted=False) # 使用lstm处理数据 _,sequence_output= self.rnn(packed_embedded ) # # 使用聚合层聚合sequence_output # batch_mean_hidden = self.average_layer(sequence_output,sequence_length) # 输出文本分类output output = self.output(sequence_output) return outputlinear(): argument 'input' (position 1) must be Tensor, not tuple
根据您提供的代码,我发现这段代码可能存在以下问题:
1. `sequence_length`这个变量未定义,可能导致代码运行出错。
2. `self.average_layer`这个函数的输入参数`sequence_output`是一个tuple,但是`average_layer`函数可能只接受tensor类型的输入参数。
3. `self.output`函数的输入参数`sequence_output`是一个tuple,可能需要修改为`batch_mean_hidden`或者`sequence_output[0]`。
建议您检查一下代码,特别是`average_layer`和`self.output`这两个函数的实现和输入参数是否正确。
如何使用torchviz可视化下面的神经网络 class Net(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Net, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.lstm = nn.LSTM(hidden_size, hidden_size, bidirectional=True) self.self_attn = nn.MultiheadAttention(hidden_size, num_heads=8) self.fc3 = nn.Linear(hidden_size, output_size) def forward(self, x, lengths): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) packed_x = pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False) packed_out, _ = self.lstm(packed_x) out, _ = pad_packed_sequence(packed_out, batch_first=True) out = out.transpose(0, 1) out, _ = self.self_attn(out, out, out) out = out.transpose(0, 1) out = out.mean(dim=1) out = self.fc3(out) return out
首先,确保您已经安装了torchviz。
然后,按照以下步骤使用torchviz可视化神经网络:
1. 导入必要的库:
```
import torch
from torch.autograd import Variable
from torchviz import make_dot
```
2. 创建一个Net对象并将其输入引入可视化函数中:
```
Net_object = Net(10, 20, 2)
inputs = Variable(torch.randn(1, 10))
lengths = [10]
dot = make_dot(Net_object(inputs, lengths), params=dict(Net_object.named_parameters()))
```
3. 渲染可视化:
```
dot.render('net.gv', view=True)
```
这将创建一个名为'net.gv'的文件,并将其渲染为图形用户界面。
阅读全文