ie = IECore() net = ie.read_network(model=path_to_xml_file, weights=path_to_bin_file) input_layer = next(iter(net.input_info)) n, c, h, w = net.input_info[input_layer].input_data.shape net.reshape({input_layer: (n, c, h*2, w*2)})
时间: 2023-05-18 14:06:08 浏览: 107
这段代码是用来读取一个模型和权重文件,并对输入数据进行reshape操作的。其中,IECore()是用来创建Inference Engine核心对象的,read_network()函数用来读取模型和权重文件,input_layer是获取输入层的名称,n、c、h、w是获取输入数据的维度信息,reshape()函数则是对输入数据进行reshape操作,将高和宽都扩大了2倍。
相关问题
if not train: # Load Pretrained Weights model_spot.load_weights(path) else: model_spot.set_weights(weight_reset_spot) history_spot = model_spot.fit( X_train, np.array(y_train), batch_size=batch_size, epochs=epochs_spot, verbose=0, validation_data = (X_test, np.array(y_test)), shuffle=True, callbacks=[keras.callbacks.ModelCheckpoint( filepath = path, save_weights_only=True )], )
从这段代码中可以看出,如果train为False,则会加载预训练的权重;如果train为True,则会使用重置后的权重进行训练。在训练时,使用了批处理大小为batch_size,训练轮数为epochs_spot,同时设置了验证集为(X_test, np.array(y_test)),并打乱数据顺序。此外,还使用了回调函数keras.callbacks.ModelCheckpoint,用于在每个epoch结束时保存模型权重。保存的路径为path。
import tensorflow as tf from im_dataset import train_image, train_label, test_image, test_label from AlexNet8 import AlexNet8 from baseline import baseline from InceptionNet import Inception10 from Resnet18 import ResNet18 import os import matplotlib.pyplot as plt import argparse import numpy as np parse = argparse.ArgumentParser(description="CVAE model for generation of metamaterial") hyperparameter_set = parse.add_argument_group(title='HyperParameter Setting') dim_set = parse.add_argument_group(title='Dim setting') hyperparameter_set.add_argument("--num_epochs",type=int,default=200,help="Number of train epochs") hyperparameter_set.add_argument("--learning_rate",type=float,default=4e-3,help="learning rate") hyperparameter_set.add_argument("--image_size",type=int,default=16*16,help="vector size of image") hyperparameter_set.add_argument("--batch_size",type=int,default=16,help="batch size of database") dim_set.add_argument("--z_dim",type=int,default=20,help="dim of latent variable") dim_set.add_argument("--feature_dim",type=int,default=32,help="dim of feature vector") dim_set.add_argument("--phase_curve_dim",type=int,default=41,help="dim of phase curve vector") dim_set.add_argument("--image_dim",type=int,default=16,help="image size: [image_dim,image_dim,1]") args = parse.parse_args() def preprocess(x, y): x = tf.io.read_file(x) x = tf.image.decode_png(x, channels=1) x = tf.cast(x,dtype=tf.float32) /255. x1 = tf.concat([x, x], 0) x2 = tf.concat([x1, x1], 1) x = x - 0.5 y = tf.convert_to_tensor(y) y = tf.cast(y,dtype=tf.float32) return x2, y train_db = tf.data.Dataset.from_tensor_slices((train_image, train_label)) train_db = train_db.shuffle(100).map(preprocess).batch(args.batch_size) test_db = tf.data.Dataset.from_tensor_slices((test_image, test_label)) test_db = test_db.map(preprocess).batch(args.batch_size) model = ResNet18([2, 2, 2, 2]) model.build(input_shape=(args.batch_size, 32, 32, 1)) model.compile(optimizer = tf.keras.optimizers.Adam(lr = 1e-3), loss = tf.keras.losses.MSE, metrics = ['MSE']) checkpoint_save_path = "./checkpoint/InceptionNet_im_3/checkpoint.ckpt" if os.path.exists(checkpoint_save_path+'.index'): print('------------------load the model---------------------') model.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,save_weights_only=True,save_best_only=True) history = model.fit(train_db, epochs=500, validation_data=test_db, validation_freq=1, callbacks=[cp_callback]) model.summary() acc = history.history['loss'] val_acc = history.history['val_loss'] plt.plot(acc, label='Training MSE') plt.plot(val_acc, label='Validation MSE') plt.title('Training and Validation MSE') plt.legend() plt.show()
这段代码是使用 TensorFlow 构建了一个 ResNet18 模型,对图像进行分类任务。其中使用了 argparse 库来设置超参数,使用了 tf.data.Dataset 来进行数据处理和加载,使用了 tf.keras.callbacks.ModelCheckpoint 来保存模型的训练结果。同时还使用了 matplotlib.pyplot 库来绘制训练和验证的 MSE(均方误差)曲线。
阅读全文