用c++ opencv dnn调用keypointrcnn_resnet50_fpn.onnx模型写一个姿态估计示例,同时给出将keypointrcnn_resnet50_fpn转为onnx模型的示例
时间: 2024-05-15 08:16:39 浏览: 208
姿态估计示例:
```c++
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
using namespace cv;
using namespace cv::dnn;
using namespace std;
int main()
{
// 加载模型
Net net = readNetFromONNX("keypointrcnn_resnet50_fpn.onnx");
// 打开摄像头
VideoCapture cap(0);
if (!cap.isOpened())
{
cout << "Error opening video stream" << endl;
return -1;
}
while (true)
{
Mat frame;
cap.read(frame);
// 对图像进行预处理
Mat inputBlob = blobFromImage(frame, 1.0 / 255, Size(1024, 1024), Scalar(0, 0, 0), true, false);
net.setInput(inputBlob);
// 进行推理
vector<Mat> outs;
net.forward(outs);
// 获取关键点和边框坐标
Mat detection = outs[0];
Mat keypoints = outs[1];
// 绘制关键点和边框
for (int i = 0; i < detection.rows; i++)
{
float confidence = detection.at<float>(i, 2);
if (confidence > 0.7)
{
int x1 = detection.at<float>(i, 3) * frame.cols;
int y1 = detection.at<float>(i, 4) * frame.rows;
int x2 = detection.at<float>(i, 5) * frame.cols;
int y2 = detection.at<float>(i, 6) * frame.rows;
rectangle(frame, Point(x1, y1), Point(x2, y2), Scalar(0, 255, 0), 2);
for (int j = 0; j < keypoints.cols; j += 3)
{
int x = keypoints.at<float>(i, j) * frame.cols;
int y = keypoints.at<float>(i, j + 1) * frame.rows;
float score = keypoints.at<float>(i, j + 2);
if (score > 0.3)
circle(frame, Point(x, y), 3, Scalar(0, 0, 255), -1);
}
}
}
// 显示结果
imshow("Pose Estimation", frame);
// 按Esc键退出
if (waitKey(1) == 27)
break;
}
cap.release();
destroyAllWindows();
return 0;
}
```
将keypointrcnn_resnet50_fpn转为onnx模型的示例:
```python
import torch
import torchvision
# 加载模型
model = torchvision.models.detection.keypointrcnn_resnet50_fpn(pretrained=True)
# 设置模型为评估模式
model.eval()
# 导出模型为ONNX格式
input_shape = (3, 800, 800)
x = torch.randn(*input_shape)
torch.onnx.export(model, x, "keypointrcnn_resnet50_fpn.onnx", input_names=["input"], output_names=["detection", "keypoints"], opset_version=11)
```
阅读全文