本题要求建立一个无向图,采用邻接矩阵做为存储结构。 例如 image.png 函数接口定义: void CreatMGraph(MGraph &G);//创建图G int locate(MGraph G,char v);//返回顶点v的下标 G 为图,采用邻接矩阵存储结构,v 是顶点的值。 裁判测试程序样例: #include <stdio.h> #define MVNum 100 //最大顶点数 typedef struct{ char vexs[MVNum]; //存放顶点的一维数组 int arcs[MVNum][MVNum]; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和边数 }MGraph; void CreatMGraph(MGraph &G);/* 创建图 */ void printGraph(MGraph G);/*输出图 */ int locate(MGraph G,char v);//返回顶点v的下标 int main() { MGraph G; CreatMGraph(G);//创建图G printGraph(G);//打印该图 return 0; } void printGraph(MGraph G)//打印图 { int i,j; for(i=0;i<G.vexnum;i++) { printf("%c:",G.vexs[i]); for(j=0;j<G.vexnum;j++) if (G.arcs[i][j]) printf(" %c",G.vexs[j]); printf("\n"); } } /* 请在这里填写答案 */ 输入信息为:第一行给出图的顶点数n和边数e。第二行给出n个字符,表示n个顶点的数据元素的值。后面是e行,给出每一条边的两个顶点的值(顶点之间无空格)。 输出每个顶点的值以及各顶点的邻接点的值。 输入样例: 7 9 0123456 02 03 04 13 15 23 25 45 56 输出样例: 0: 2 3 4 1: 3 5 2: 0 3 5 3: 0 1 2 4: 0 5 5: 1 2 4 6 6: 5

时间: 2024-03-22 13:39:48 浏览: 180
以下是该题的参考答案,可以供你参考。 ``` #include <stdio.h> #define MVNum 100 //最大顶点数 typedef struct{ char vexs[MVNum]; //存放顶点的一维数组 int arcs[MVNum][MVNum]; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和边数 }MGraph; int locate(MGraph G, char v) { for(int i=0;i<G.vexnum;i++){ if(G.vexs[i]==v){ return i; } } return -1; } void CreatMGraph(MGraph &G) { scanf("%d%d", &G.vexnum, &G.arcnum); getchar(); for(int i=0;i<G.vexnum;i++){ scanf("%c", &G.vexs[i]); } getchar(); for(int i=0;i<G.vexnum;i++){ for(int j=0;j<G.vexnum;j++){ G.arcs[i][j]=0; } } for(int i=0;i<G.arcnum;i++){ char c1,c2; scanf("%c%c", &c1, &c2); getchar(); int v1=locate(G,c1); int v2=locate(G,c2); G.arcs[v1][v2]=1; G.arcs[v2][v1]=1; } } void printGraph(MGraph G)//打印图 { int i,j; for(i=0;i<G.vexnum;i++) { printf("%c:",G.vexs[i]); for(j=0;j<G.vexnum;j++) if (G.arcs[i][j]) printf(" %c",G.vexs[j]); printf("\n"); } } int main() { MGraph G; CreatMGraph(G);//创建图G printGraph(G);//打印该图 return 0; } ``` 这个程序的基本思路是: 1. 定义邻接矩阵结构体MGraph,其中包括顶点数组vexs、邻接矩阵数组arcs,以及当前图中顶点数vexnum和边数arcnum。 2. 通过函数CreatMGraph创建图,其中依次输入顶点数和边数,以及每个顶点的值和每条边的两个顶点的值。在创建过程中,通过locate函数可以找到每个顶点在顶点数组中的下标,从而在邻接矩阵中标记对应的边。 3. 通过函数printGraph打印图,其中依次遍历每个顶点,对于每个顶点,遍历邻接矩阵中对应的行,找到所有邻接点,输出即可。 以上程序中主要需要注意的点是: 1. 在读取输入时,需要注意读取完一个字符后需要调用getchar函数吸收掉后面的空格或换行符。 2. 在locate函数中,如果找不到对应的顶点,需要返回-1。 3. 在邻接矩阵中,如果两个顶点之间存在边,则对应的元素值为1;如果不存在边,则为0。由于是无向图,邻接矩阵是对称的,即两个顶点之间有边,则对应的两个元素都是1。
阅读全文

相关推荐

c语言实现判断下列代码的结点是否已经全部连通,如果不连通有哪些连通分量:#include <bits/stdc++.h> using namespace std; #define MAX 100 #define MAX_NODE_NUM 1000 typedef struct Arcell{ int adj;//权重 }Arcell,AdjMatrix[MAX][MAX]; typedef struct MGraph{ char vex[MAX];//点的数组 AdjMatrix arc;//边 int Vexnum,Arcnum;//顶点数,边数 }MGraph;//构建图 int Locate(MGraph G,char v){//找到某个点的位置 int i; for(i=0;v!=G.vex[i];i++); return i; } void CreatMGraph(MGraph &G){//创建图的矩阵 printf("请输入顶点数和弧数: "); scanf("%d%d",&G.Vexnum,&G.Arcnum); int i,j,w; char v1,v2;//一条边的两个顶点 printf("请输入各顶点: "); for(i=0;i<G.Vexnum;i++){//构建矩阵 cin>>G.vex[i]; for(j=0;j<G.Vexnum;j++) G.arc[i][j].adj=G.arc[j][i].adj=0;//初始化度为零 } printf("请输入各弧(格式为:顶点 顶点 弧长): \n"); for(i=0;i<G.Arcnum;i++){ getchar(); cin>>v1>>v2>>w; int t1=Locate(G,v1); int t2=Locate(G,v2); G.arc[t2][t1].adj=G.arc[t1][t2].adj=w; } } bool visited[MAX_NODE_NUM]; // 用于记录结点是否已访问 int adjMatrix[MAX_NODE_NUM][MAX_NODE_NUM]; // 邻接矩阵,用于表示图的连接关系 int nodeNum, edgeNum; // 结点数和边数 void dfs(int node) { visited[node] = true; printf("%d ", node); for (int i = 0; i < nodeNum; i++) { if (adjMatrix[node][i] && !visited[i]) { dfs(i); } } } void Cout(MGraph G){//总的输出 printf("以下为各顶点的度\n"); int i,j; for(i=0;i<G.Vexnum;i++){ int s=0; for(j=0;j<G.Vexnum;j++) if(G.arc[i][j].adj) s++; printf("%c顶点的度为: %d \n",G.vex[i],s); } } int main(){ MGraph G; CreatMGraph(G); Cout(G); return 1; }

最新推荐

recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于springboot的简历系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

“招聘智能化”:线上招聘问答系统的功能开发

互联网技术经过数十年的发展,已经积累了深厚的理论基础,并在实际应用中无处不在,极大地消除了地理信息的障碍,实现了全球即时通讯,极大地便利了人们的日常生活。因此,利用计算机技术设计的线上招聘问答系统,不仅在管理上更加系统化和操作性强,更重要的是在数据保存和使用上能够节省大量时间,使得系统变得非常高效和实用。 线上招聘问答系统采用MySQL作为数据管理工具,Java作为编码语言,以及SSM框架作为开发架构。系统主要实现了简历管理、论坛帖子管理、职位招聘管理、职位招聘留言管理、招聘岗位管理、所在行业管理以及求职意向管理等功能。 该系统的设计不仅方便了操作人员,而且合理性高,能有效避免误操作,确保数据在录入时就符合设计要求,从而最大限度地减少源头性输入错误,使数据更加可控和可靠,将出错率降至最低。
recommend-type

simulink实现标准IEEE33配电网系统,50HZ,将各节点数据统计起来输出到工作区,再matlab中跑出某时刻节点电压分布,适合用于观察某时刻节点电压变化情况 #特别是当用于接入双馈风机时

simulink实现标准IEEE33配电网系统,50HZ,将各节点数据统计起来输出到工作区,再matlab中跑出某时刻节点电压分布,适合用于观察某时刻节点电压变化情况。 #特别是当用于接入双馈风机时,用powergui无法进行潮流计算,通过此方法能过很好的解决此问题。 有参考文献。
recommend-type

给袋式真空包装机UG10全套技术资料100%好用.zip

给袋式真空包装机UG10全套技术资料100%好用.zip
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"