stm32pwm波占空比精度

时间: 2024-08-14 12:09:17 浏览: 65
STM32微控制器中的PWM(脉宽调制)用于生成周期性的电信号,其占空比是指高电平信号的时间长度相对于整个周期的比例。对于STM32系列,PWM模块通常有较高的精度,但也受到硬件限制和软件配置的影响。 1. 硬件精度:STM32 PWM模块通常提供固定的分辨率,比如12位、14位等,这决定了它能产生的最小脉宽变化量,进而影响了实际的占空比精度。 2. 软件设置:可通过预设值或通过定时器寄存器调整PWM的周期和占空比。如果你设置了固定频率,并用软件控制Duty Cycle,可能会因为计数值溢出或定时器更新速度导致误差。 3. 低速模式下:在较低的时钟频率下,或者当CPU负载较高时,PWM的计算和更新可能会滞后,进一步影响精度。 为了提高精度,可以使用高级定时功能(如HSE或HSI时钟),并优化代码以减少中断处理时间。此外,有些STM32系列还支持DMA来独立于CPU更新PWM,减少系统负载对精度的影响。
相关问题

stm32PWM占空比精度

在STM32中,PWM占空比精度通常是由定时器的分辨率决定的。对于每个定时器,都有一个预分频器和一个计数器,它们共同控制着PWM信号的频率和占空比。占空比精度的计算公式如下: 占空比精度 = (计数器的位数 + 1) / (预分频器的值 + 1) 例如,如果一个定时器的计数器是16位的,预分频器的值是999,那么该定时器的PWM占空比精度就是: 占空比精度 = (16 + 1) / (999 + 1) = 0.0172 = 1.72% 这意味着该定时器的PWM信号占空比可以以1.72%为步长进行调节。如果需要更高的占空比精度,可以使用更高分辨率的定时器或者更低的预分频器。

stm32pwm占空比计算例子

在STM32中,PWM是通过定时器来实现的。其中占空比指的是PWM信号的高电平时间占整个周期的比例。 以STM32F407为例,如果需要创建一个PWM信号,可以使用Timer的OCx(输出比较)模式。可以通过以下步骤计算PWM信号占空比: 1. 设置Timer的计数频率: 计数频率 = APB时钟频率 / 分频系数 例如,如果APB1时钟频率为42MHz,分频系数为128,则计数频率为328.125kHz。 2. 设置PWM周期: PWM周期 = Timer计数频率 / PWM频率 例如,如果PWM频率为1kHz,计数频率为328.125kHz,则PWM周期为328.125个计数周期。 3. 设置PWM占空比: PWM占空比 = 高电平时间 / PWM周期 例如,如果需要一个50%的占空比,那么高电平时间应为PWM周期的一半,即164.0625个计数周期。 4. 设置定时器: 将定时器设置为OCx模式,使其在计数器值达到一定值时,输出PWM信号。根据步骤3中计算出的高电平时间,可以设置OCx模式的占空比。 以上是简单的PWM占空比计算例子,但在实际应用中还需要考虑到多种因素,如控制精度、最小计数精度、输出电平等,需要根据具体需求进行设置。同时还要注意保持PWM波形和控制信号的相位一致,否则会导致噪声等问题。

相关推荐

最新推荐

recommend-type

STM32F103RC_PWM二级RC滤波实现DAC

STM32F103RC PWM 通过二阶RC滤波实现DAC是一种常见的模拟信号生成方法,主要用于将数字信号转换为连续的模拟电压。在这个过程中,STM32F103微控制器的PWM(脉宽调制)输出被用作输入,通过一个二阶RC滤波器来平滑PWM...
recommend-type

STM32G4高精度定时器及在数字电源中的应用.pdf

例如,在数字电源中,高精度定时器可用于PWM(脉宽调制)信号的生成,通过调整PWM占空比来调节输出电压,实现电源的动态响应和高效能。 STM32G4系列还集成了混合信号处理功能,包括数字信号处理(DSP)指令和模拟...
recommend-type

基于STM32的温度控制系统设计.pdf

STM32F103内置的PWM模块能够方便地产生不同频率和占空比的脉冲,以满足不同温度需求。 PID(比例-积分-微分)控制算法是工业自动化中的经典控制策略,它结合了比例控制的即时响应、积分控制的消除偏差以及微分控制...
recommend-type

解决本地连接丢失无法上网的问题

"解决本地连接丢失无法上网的问题" 本地连接是计算机中的一种网络连接方式,用于连接到互联网或局域网。但是,有时候本地连接可能会丢失或不可用,导致无法上网。本文将从最简单的方法开始,逐步解释如何解决本地连接丢失的问题。 **任务栏没有“本地连接”** 在某些情况下,任务栏中可能没有“本地连接”的选项,但是在右键“网上邻居”的“属性”中有“本地连接”。这是因为本地连接可能被隐藏或由病毒修改设置。解决方法是右键网上邻居—属性—打开网络连接窗口,右键“本地连接”—“属性”—将两者的勾勾打上,点击“确定”就OK了。 **无论何处都看不到“本地连接”字样** 如果在任务栏、右键“网上邻居”的“属性”中都看不到“本地连接”的选项,那么可能是硬件接触不良、驱动错误、服务被禁用或系统策略设定所致。解决方法可以从以下几个方面入手: **插拔一次网卡一次** 如果是独立网卡,本地连接的丢失多是因为网卡接触不良造成。解决方法是关机,拔掉主机后面的电源插头,打开主机,去掉网卡上固定的螺丝,将网卡小心拔掉。使用工具将主板灰尘清理干净,然后用橡皮将金属接触片擦一遍。将网卡向原位置插好,插电,开机测试。如果正常发现本地连接图标,则将机箱封好。 **查看设备管理器中查看本地连接设备状态** 右键“我的电脑”—“属性”—“硬件”—“设备管理器”—看设备列表中“网络适配器”一项中至少有一项。如果这里空空如也,那说明系统没有检测到网卡,右键最上面的小电脑的图标“扫描检测硬件改动”,检测一下。如果还是没有那么是硬件的接触问题或者网卡问题。 **查看网卡设备状态** 右键网络适配器中对应的网卡选择“属性”可以看到网卡的运行状况,包括状态、驱动、中断、电源控制等。如果发现提示不正常,可以尝试将驱动程序卸载,重启计算机。 本地连接丢失的问题可以通过简单的设置修改或硬件检查来解决。如果以上方法都无法解决问题,那么可能是硬件接口或者主板芯片出故障了,建议拿到专业的客服维修。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Java泛型权威指南:精通从入门到企业级应用的10个关键点

![java 泛型数据结构](https://media.geeksforgeeks.org/wp-content/uploads/20210409185210/HowtoImplementStackinJavaUsingArrayandGenerics.jpg) # 1. Java泛型基础介绍 Java泛型是Java SE 1.5版本中引入的一个特性,旨在为Java编程语言引入参数化类型的概念。通过使用泛型,可以设计出类型安全的类、接口和方法。泛型减少了强制类型转换的需求,并提供了更好的代码复用能力。 ## 1.1 泛型的用途和优点 泛型的主要用途包括: - **类型安全**:泛型能
recommend-type

cuda下载后怎么通过anaconda关联进pycharm

CUDA(Compute Unified Device Architecture)是NVIDIA提供的一种并行计算平台和编程模型,用于加速GPU上进行的高性能计算任务。如果你想在PyCharm中使用CUDA,你需要先安装CUDA驱动和cuDNN库,然后配置Python环境来识别CUDA。 以下是步骤: 1. **安装CUDA和cuDNN**: - 访问NVIDIA官网下载CUDA Toolkit:https://www.nvidia.com/zh-cn/datacenter/cuda-downloads/ - 下载对应GPU型号和系统的版本,并按照安装向导安装。 - 安装
recommend-type

BIOS报警声音解析:故障原因与解决方法

BIOS报警声音是计算机启动过程中的一种重要提示机制,当硬件或软件出现问题时,它会发出特定的蜂鸣声,帮助用户识别故障源。本文主要针对常见的BIOS类型——AWARD、AMI和早期的POENIX(现已被AWARD收购)——进行详细的故障代码解读。 AWARDBIOS的报警声含义: 1. 1短声:系统正常启动,表示无问题。 2. 2短声:常规错误,需要进入CMOS Setup进行设置调整,可能是不正确的选项导致。 3. 1长1短:RAM或主板故障,尝试更换内存或检查主板。 4. 1长2短:显示器或显示卡错误,检查视频输出设备。 5. 1长3短:键盘控制器问题,检查主板接口或更换键盘。 6. 1长9短:主板FlashRAM或EPROM错误,BIOS损坏,更换FlashRAM。 7. 不断长响:内存条未插紧或损坏,需重新插入或更换。 8. 持续短响:电源或显示问题,检查所有连接线。 AMI BIOS的报警声含义: 1. 1短声:内存刷新失败,内存严重损坏,可能需要更换。 2. 2短声:内存奇偶校验错误,可关闭CMOS中的奇偶校验选项。 3. 3短声:系统基本内存检查失败,替换内存排查。 4. 4短声:系统时钟错误,可能涉及主板问题,建议维修或更换。 5. 5短声:CPU错误,可能是CPU、插座或其他组件问题,需进一步诊断。 6. 6短声:键盘控制器错误,检查键盘连接或更换新键盘。 7. 7短声:系统实模式错误,主板可能存在问题。 8. 8短声:显存读写错误,可能是显卡存储芯片损坏,更换故障芯片或修理显卡。 9. 9短声:ROM BIOS检验错误,需要替换相同型号的BIOS。 总结,BIOS报警声音是诊断计算机问题的重要线索,通过理解和识别不同长度和组合的蜂鸣声,用户可以快速定位到故障所在,采取相应的解决措施,确保计算机的正常运行。同时,对于不同类型的BIOS,其报警代码有所不同,因此熟悉这些代码对应的意义对于日常维护和故障排除至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

图路径规划技术:导航系统中的路径优化算法

![java数据结构之图](https://img-blog.csdnimg.cn/201812241337282.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2R5d182NjY2NjY=,size_16,color_FFFFFF,t_70) # 1. 图路径规划技术概述 图路径规划技术是现代信息技术中的关键组成部分,它在物流、交通、网络设计等多个领域发挥着重要作用。路径规划涉及的图论基础、路径优化算法和应用案例是这一领域的三大支