PSO-BP matlab

时间: 2023-08-23 12:15:31 浏览: 40
PSO-BP是一种结合了粒子群优化算法(PSO)和BP神经网络的方法,用于解决BP神经网络在初始权值和阈值选择上容易陷入局部极小点的问题。PSO-BP算法通过使用PSO优化BP神经网络的初始权值和阈值,提高了BP神经网络的预测精度。\[2\] 在MATLAB中实现PSO-BP算法,可以使用以下步骤: 1. 定义BP神经网络的结构,包括输入层、隐藏层和输出层的节点数。 2. 定义PSO算法的参数,如粒子数、迭代次数等。 3. 初始化粒子的位置和速度,即BP神经网络的初始权值和阈值。 4. 根据PSO算法的迭代次数,更新粒子的位置和速度,并计算适应度函数值。 5. 根据适应度函数值选择全局最优解,并更新BP神经网络的权值和阈值。 6. 重复步骤4和步骤5,直到达到设定的迭代次数或满足停止条件。 7. 使用训练好的BP神经网络进行预测或分类任务。 在MATLAB中,可以使用函数子文件来实现PSO-BP算法。函数子文件中包括定义适应度函数、构建BP神经网络、训练BP神经网络等步骤。\[3\] 通过以上步骤,可以在MATLAB中实现PSO-BP算法,并应用于多特征分类预测等问题。 #### 引用[.reference_title] - *1* [PSO优化BP神经网络在Matlab中的实现](https://blog.csdn.net/lo3656485/article/details/45507261)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [分类预测 | MATLAB实现PSO-BP粒子群优化BP神经网络多特征分类预测](https://blog.csdn.net/kjm13182345320/article/details/128194438)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [回归预测 | MATLAB实现PSO-BP多输入多输出](https://blog.csdn.net/kjm13182345320/article/details/113758765)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

bp预测温度模型_pso优化_pso优化_pso-bpmatlab_psobp预测_pso-bp_pso-bp预测_源码是一种基于神经网络和粒子群优化算法相结合的温度预测模型。该模型使用神经网络中的反向传播算法(BP算法)作为基本的温度预测模型,通过利用自适应的粒子群优化算法(PSO算法)对神经网络的权值进行优化,从而提高温度预测的准确性和泛化能力。 该模型使用MATLAB编程语言实现,将PSO算法与BP算法相结合,首先根据历史温度数据构建BP神经网络模型,并通过反向传播算法进行训练和优化。随后,利用PSO算法对BP神经网络中的权值进行迭代和更新,以求得最优的预测结果。 在编写源码时,首先需要导入MATLAB的神经网络工具箱和粒子群优化工具箱。然后,定义神经网络的结构和参数,如输入层、隐藏层和输出层的神经元个数。接下来,初始化粒子群的位置和速度,并定义适应度函数,用于评估每个粒子的适应度。在迭代过程中,根据每个粒子的位置和速度更新权值,并通过适应度函数进行选择和更新。 使用PSO优化BP预测温度模型的好处是可以克服BP神经网络算法收敛速度慢、易陷入局部最优等问题,并通过粒子群算法的全局搜索能力,提高温度预测的准确性和稳定性。 总的来说,bp预测温度模型_pso优化_pso优化_pso-bpmatlab_psobp预测_pso-bp_pso-bp预测_源码是一种综合运用了神经网络和粒子群优化算法的温度预测模型,通过优化神经网络的权值,提高预测准确性,并通过全局搜索的能力,克服BP算法的局部最优问题。这种模型在实际应用中具有广泛的潜力。
MATLAB是一种强大的科学计算软件,它提供了许多工具和函数,可以进行多种类型的数据分析和建模。GA(遗传算法)、PSO(粒子群优化算法)和BP(反向传播算法)都是MATLAB中用于优化问题解决的算法。 遗传算法(GA)是一种模拟自然界进化过程的算法,通常用于寻找近似最优解。它通过模拟基因的遗传变异和自然选择来探索潜在的解空间。在MATLAB中,可以使用遗传算法工具箱(GA Toolbox)来实现GA算法。通过为问题定义适当的适应度函数和遗传算子(交叉和变异),可以使用GA算法在给定的约束下找到问题的最优解。 粒子群优化算法(PSO)来源于对鸟群觅食行为的研究,它通过模拟鸟群中个体之间的合作和信息共享来搜索最优解。在MATLAB中,可以使用粒子群优化工具箱(PSO Toolbox)来实现PSO算法。通过定义适当的适应度函数和粒子更新规则,可以使用PSO算法在给定约束下找到问题的最优解。 反向传播算法(BP)是一种常用的神经网络训练算法,用于确定神经网络的权重和偏置值,以最小化预测输出与期望输出之间的差距。在MATLAB中,可以使用神经网络工具箱(Neural Network Toolbox)来实现BP算法。通过选择合适的网络拓扑结构、定义适当的损失函数和设定迭代次数,可以使用BP算法训练神经网络,从而实现对各种问题的预测和分类。 综上所述,MATLAB提供了GA、PSO和BP算法的工具箱,可以快速、灵活地解决优化问题。这些工具可以根据具体问题的特点和要求选择合适的算法,并通过调整参数和优化过程来求解问题的最优解。
PSO-BP神经网络是一种结合了粒子群优化(PSO)算法和反向传播(BP)算法的神经网络模型。PSO-BP神经网络的目的是解决传统BP神经网络容易陷入局部极小点的问题,从而提高预测精度。在PSO-BP神经网络中,PSO算法用于优化BP神经网络的初始权值和阈值,以减少误差并提高拟合效果。 BP算法是一种基于梯度的优化方法,用于调整神经网络的权重,以最小化预测输出与实际目标之间的误差。它通过计算误差并通过网络反向传播来更新权重,从而不断减少误差。BP算法被广泛应用于图像识别、自然语言处理和控制系统等领域。 PSO算法是一种基于群体智能的优化算法,模拟了鸟群觅食的行为。在PSO算法中,每个粒子代表一个解,通过不断调整速度和位置来搜索最优解。在PSO-BP神经网络中,PSO算法用于搜索BP神经网络的最佳权重和阈值,以提高网络的性能和预测精度。 综上所述,PSO-BP神经网络是一种结合了PSO算法和BP算法的神经网络模型,用于优化权重和阈值,提高预测精度。它在实际应用中可以用于多特征分类预测等任务。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [分类预测 | MATLAB实现PSO-BP粒子群优化BP神经网络多特征分类预测](https://blog.csdn.net/kjm13182345320/article/details/128194438)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [PSO优化BP神经网络初探](https://blog.csdn.net/zypiverson001/article/details/130245421)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
GA-PSO-BP预测模型是一种基于遗传算法、粒子群算法和BP神经网络算法相结合的预测模型。其主要思想是利用遗传算法和粒子群算法优化BP神经网络的权重和阈值,从而提高预测模型的精度和鲁棒性。 Matlab是一种常用的科学计算软件,对于GA-PSO-BP预测模型的构建与优化,也可使用Matlab来实现代码编写。具体实现步骤为: 1. 准备训练数据集和测试数据集,并将其导入Matlab中。 2. 定义BP神经网络的输入层、隐含层和输出层的神经元个数,并初始化权重和阈值。 3. 定义适应度函数,即评估当前BP网络预测结果的精度的函数。 4. 使用遗传算法和粒子群算法对BP网络的权重和阈值进行优化,更新神经网络模型。 5. 使用得到的优化BP网络进行训练和测试,得到预测结果,并评估预测模型的精度和鲁棒性。 下面是一个简单的GA-PSO-BP预测模型的Matlab代码示例: matlab %定义输入层、隐含层、输出层的神经元个数 input_layer_num = 4; hidden_layer_num = 8; output_layer_num = 1; %初始化BP网络的权重和阈值 w1 = rand(input_layer_num, hidden_layer_num); w2 = rand(hidden_layer_num, output_layer_num); b1 = rand(1, hidden_layer_num); b2 = rand(1, output_layer_num); %导入训练数据集和测试数据集 train_data = load('train_data.txt'); test_data = load('test_data.txt'); %定义适应度函数 function f = fitness_function(x) %计算BP网络的输出 [y, ~, ~] = bpnn(x, w1, w2, b1, b2, train_data(:, 1:end-1)); %计算预测误差 error = train_data(:, end) - y'; %计算适应度 f = 1 / mean(error.^2); end %使用遗传算法和粒子群算法优化BP网络的权重和阈值 options = gaoptimset('Display', 'iter'); [x, fval] = ga(@(x) -fitness_function(x), input_layer_num*hidden_layer_num + hidden_layer_num*output_layer_num + hidden_layer_num + output_layer_num, [], [], [], [], [], [], [], options); %更新BP网络模型 [~, w1, w2, b1, b2] = bpnn(x, w1, w2, b1, b2, train_data(:, 1:end-1)); %使用得到的优化BP网络进行测试 [y, ~, ~] = bpnn(x, w1, w2, b1, b2, test_data(:, 1:end-1)); %计算预测误差 error = test_data(:, end) - y'; %输出预测结果和误差 disp(y') disp(error') %评估预测模型的精度和鲁棒性 mse = mean(error.^2); rmse = sqrt(mse); mape = mean(abs(error./test_data(:, end))); disp(['MSE: ', num2str(mse)]); disp(['RMSE: ', num2str(rmse)]); disp(['MAPE: ', num2str(mape)]); 以上是一个简单的GA-PSO-BP预测模型的Matlab代码示例,可以根据实际需求进行更改和优化。
以下是一个简单的PSO-BP神经网络的MATLAB程序: matlab clc; clear; close all; % 定义BP神经网络参数 input_layer_size = 2; % 输入层节点数 hidden_layer_size = 4; % 隐藏层节点数 num_labels = 1; % 输出层节点数(二分类问题,输出层只有一个节点) % 初始化BP神经网络参数(随机生成权重) initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size); initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels); initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)]; % 定义PSO算法参数 options = optimoptions(@particleswarm, 'SwarmSize', 10, 'MaxIterations', 100); lb = -10 * ones(size(initial_nn_params)); % 参数下限 ub = 10 * ones(size(initial_nn_params)); % 参数上限 % 加载训练集 load('train.mat'); X = train(:, 1:2); y = train(:, 3); % 定义代价函数 costFunction = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, num_labels, X, y); % 运行PSO算法寻找最优BP神经网络参数 [nn_params, cost] = particleswarm(costFunction, numel(initial_nn_params), lb, ub, options); % 将一维参数向量转化为Theta1和Theta2矩阵 Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), num_labels, (hidden_layer_size + 1)); % 预测输出 load('test.mat'); X_test = test(:, 1:2); y_test = test(:, 3); predict = predictNN(Theta1, Theta2, X_test); % 计算准确率 accuracy = sum(predict == y_test) / length(y_test); disp(['Accuracy: ' num2str(accuracy)]); % 绘制决策边界 plotDecisionBoundary(Theta1, Theta2, X, y); 其中,randInitializeWeights 函数和 nnCostFunction 函数分别用于初始化BP神经网络权重和计算神经网络代价函数。predictNN 函数用于预测输出,plotDecisionBoundary 函数用于绘制决策边界。这些函数的实现可以参考其他资料或自行编写。 需要注意的是,PSO-BP算法可能会陷入局部最优解,因此需要多次运行算法并选择最优结果。
基于粒子群优化算法优化BP神经网络(PSO-BP)的数据分类预测是一种利用PSO算法对BP神经网络进行优化的方法。在这种方法中,PSO算法被用来寻找BP神经网络的初始权值和阈值,以解决BP神经网络容易陷入局部极小点的问题,从而提高分类预测的准确性。 具体而言,PSO-BP算法通过在整个搜索空间中搜索最优解来确定BP神经网络的初始权值和阈值。PSO算法中的粒子代表了一组权值和阈值的解,通过不断地更新粒子的位置和速度,使得粒子能够找到全局最优解。然后,利用这些优化后的初始权值和阈值来训练BP神经网络,提高其预测精度和泛化能力。 通过使用PSO-BP算法进行数据分类预测,可以有效地解决BP神经网络在初始权值和阈值选择上的随机性和局部极小点问题,从而提高分类预测的准确性和稳定性。 #### 引用[.reference_title] - *1* [分类预测 | MATLAB实现PSO-BP粒子群优化BP神经网络多特征分类预测](https://blog.csdn.net/kjm13182345320/article/details/128194438)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [粒子群算法PSO优化BP神经网络(PSO-BP)回归预测-Matlab代码实现](https://blog.csdn.net/baoliang12345/article/details/130494343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [基于粒子群PSO改进的BP神经网络分类预测,PSO-BP分类模型](https://blog.csdn.net/abc991835105/article/details/129610553)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
以下是一个简单的使用PSO-BP神经网络进行预测的Matlab代码示例: matlab % 读取数据 data = xlsread('data.xlsx'); % 将数据分为训练集和测试集 trainData = data(1:80,:); testData = data(81:end,:); % 设定BP神经网络的参数 inputNum = 5; % 输入层节点数 hiddenNum = 10; % 隐藏层节点数 outputNum = 1; % 输出层节点数 learnRate = 0.05; % 学习率 maxIter = 1000; % 最大迭代次数 % 初始化粒子群优化算法的参数 particleNum = 50; % 粒子数 w = 0.8; % 惯性权重 c1 = 2; % 个体学习因子 c2 = 2; % 社会学习因子 % 初始化粒子群 position = rand(particleNum, (inputNum + 1) * hiddenNum + (hiddenNum + 1) * outputNum); velocity = zeros(particleNum, size(position, 2)); pBest = position; pBestVal = inf(1, particleNum); gBest = zeros(1, size(position, 2)); gBestVal = inf; % 训练BP神经网络 for i = 1:maxIter % 计算每个粒子的适应度 for j = 1:particleNum net = initbp(inputNum, hiddenNum, outputNum); net = setwb(net, position(j,:)); net.trainParam.lr = learnRate; net = train(net, trainData(:,1:end-1)', trainData(:,end)'); y = sim(net, trainData(:,1:end-1)'); mse = sum((trainData(:,end)' - y).^2) / size(trainData, 1); if mse < pBestVal(j) pBestVal(j) = mse; pBest(j,:) = position(j,:); end if mse < gBestVal gBestVal = mse; gBest = position(j,:); end end % 更新粒子位置和速度 for j = 1:particleNum r1 = rand(1, size(position, 2)); r2 = rand(1, size(position, 2)); velocity(j,:) = w * velocity(j,:) + c1 * r1 .* (pBest(j,:) - position(j,:)) + c2 * r2 .* (gBest - position(j,:)); position(j,:) = position(j,:) + velocity(j,:); end end % 使用最优参数训练BP神经网络 net = initbp(inputNum, hiddenNum, outputNum); net = setwb(net, gBest); net.trainParam.lr = learnRate; net = train(net, trainData(:,1:end-1)', trainData(:,end)'); % 使用测试集进行预测 y = sim(net, testData(:,1:end-1)'); mse = sum((testData(:,end)' - y).^2) / size(testData, 1); disp(['MSE: ' num2str(mse)]); % 绘制预测结果 plot(testData(:,end), 'b'); hold on; plot(y, 'r'); legend('真实值', '预测值'); 需要注意的是,这只是一个简单的代码示例,实际应用中需要根据具体情况进行调整和优化。另外,如果你想要了解更多关于粒子群优化算法和BP神经网络的知识,可以参考相关的教材和论文。
PSO-BP神经网络预测是一种利用粒子群优化算法(PSO)对BP神经网络进行优化的方法。BP神经网络在应用过程中容易陷入局部收敛极小点,导致预测精度下降。为了解决这个问题,PSO-BP算法使用PSO算法来优化BP神经网络的初始权值和阈值,从而提高预测精度。PSO算法通过群体中个体之间的协作和信息共享,使得群体位置在解空间中从无序到有序,通过学习自己和其他成员的经验不断改变搜索模式,最终找到最优解。PSO-BP神经网络预测方法可以提高BP神经网络的拟合效果,增强其预测能力和泛化能力。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [分类预测 | MATLAB实现PSO-BP粒子群优化BP神经网络多特征分类预测](https://blog.csdn.net/kjm13182345320/article/details/128194438)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [粒子群算法PSO优化BP神经网络(PSO-BP)回归预测-Matlab代码实现](https://blog.csdn.net/baoliang12345/article/details/130494343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
粒子群算法-反向传播神经网络(PSO-BP)是一种使用粒子群算法(PSO)优化BP神经网络的方法,用于回归预测问题。下面是一个使用Matlab实现PSO-BP的代码示例: 首先,我们需要导入所需的Matlab工具箱,如Neural Network Toolbox和Particle Swarm Optimization Toolbox。 matlab % 导入数据集 data = load('data.csv'); % 将数据集存储在名为data.csv的文件中 X = data(:, 1:end-1); % 特征数据 y = data(:, end); % 目标数据 % 初始化BP神经网络 net = feedforwardnet([10 10]); % 创建一个包含两个隐藏层(每个隐藏层有10个神经元)的前馈型神经网络 net.trainFcn = 'trainlm'; % 设置BP神经网络的训练算法为Levenberg-Marquardt算法 % 创建粒子群算法对象 pso = psoptimset('Display', 'iter'); % 设置参数显示方式为迭代显示 % 定义适应度函数 fitness = @(x) validateBPNet(x, X, y); % 运行PSO-BP算法进行优化 [mse, best] = pso(fitness, 20, [], [], [], [], [-10 -10], [10 10], pso); % 验证BP神经网络 net = configure(net, X', y'); net.IW{1, 1} = best(1:10); net.LW{2, 1} = best(11:20); net.LW{3, 2} = best(21:30); net.b{1} = best(31:40); net.b{2} = best(41:50); net.b{3} = best(51:60); % 运行BP神经网络进行预测 y_pred = net(X'); % 显示预测结果 figure; plot(y, 'b'); hold on; plot(y_pred', 'r'); legend('实际值', '预测值'); xlabel('样本编号'); ylabel('值'); title('PSO-BP回归预测结果'); function mse = validateBPNet(x, X, y) net = feedforwardnet([10 10]); net.trainFcn = 'trainlm'; net = configure(net, X', y'); net.IW{1, 1} = x(1:10); net.LW{2, 1} = x(11:20); net.LW{3, 2} = x(21:30); net.b{1} = x(31:40); net.b{2} = x(41:50); net.b{3} = x(51:60); y_pred = net(X'); mse = mean((y - y_pred').^2); end 在上述代码中,我们首先导入数据集,然后初始化了一个包含两个隐藏层的BP神经网络。接下来,我们创建了一个粒子群算法对象,并定义了适应度函数。然后,我们使用PSO-BP算法进行优化,得到了最佳的神经网络参数。最后,我们使用最佳参数配置的BP神经网络进行预测,并绘制了实际值和预测值之间的比较图。 这段代码实现了PSO-BP方法用于回归预测问题的一个简单示例,你可以根据自己的需要进行修改和扩展。
粒子群算法(PSO)是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物群体的行为,通过粒子的迭代更新来寻找最优解。BP神经网络是一种常见的人工神经网络,用于解决回归、分类等问题。将PSO算法与BP神经网络相结合可以提高BP神经网络的训练速度和精度,这就是PSO-BP算法。 在MATLAB中实现PSO-BP算法的回归预测案例,首先需要定义BP神经网络的结构,包括输入层、隐藏层和输出层的神经元数量。然后,利用PSO算法初始化一组粒子,并在每次迭代中根据粒子的位置和速度更新神经网络的权重和偏置。通过优化后的神经网络对训练数据进行训练,并对测试数据进行回归预测。 以下是一个简单的MATLAB代码实现案例: matlab % 定义BP神经网络结构 inputSize = 4; hiddenSize = 6; outputSize = 1; % 初始化PSO算法参数 options = optimoptions(@particleswarm, 'SwarmSize', 100, 'MaxIterations', 100); % 定义适应度函数 fitnessFunc = @(x) pso_bp_fitness(x, inputSize, hiddenSize, outputSize, trainData, trainLabel); % 使用PSO算法优化权重和偏置 [optimizedParams, ~] = particleswarm(fitnessFunc, inputSize * hiddenSize + hiddenSize + hiddenSize * outputSize + outputSize, [], [], options); % 训练BP神经网络 net = trainBP(inputSize, hiddenSize, outputSize, optimizedParams, trainData, trainLabel); % 测试数据回归预测 predictedLabels = net(testData); 在上述代码中,pso_bp_fitness是适应度函数,用于计算每个粒子的适应度值;trainBP是训练BP神经网络的函数,接受优化后的参数和训练数据,并返回训练好的神经网络;predictedLabels是通过训练好的神经网络对测试数据进行回归预测得到的结果。通过这样的方式,可以利用PSO-BP算法进行回归预测任务的优化和实现。

最新推荐

300122智飞生物财务报告资产负债利润现金流量表企业治理结构股票交易研发创新等1391个指标(2007-2022).xlsx

包含1391个指标,其说明文档参考: https://blog.csdn.net/yushibing717/article/details/136115027 数据来源:基于上市公司公告数据整理 数据期间:从具体上市公司上市那一年开始-2022年度的数据,年度数据 包含各上市公司股票的、多年度的上市公司财务报表资产负债表、上市公司财务报表利润表、上市公司财务报表现金流量表间接法、直接法四表合在一个面板里面,方便比较和分析利用 含各个上市公司股票的、多年度的 偿债能力 披露财务指标 比率结构 经营能力 盈利能力 现金流量分析 风险水平 发展能力 每股指标 相对价值指标 股利分配 11类财务指标分析数据合在一个面板里面,方便比较和分析利用 含上市公司公告的公司治理、股权结构、审计、诉讼等数据 包含1391个指标,如: 股票简称 证券ID 注册具体地址 公司办公地址 办公地址邮政编码 董事会秘书 董秘联系电话 董秘传真 董秘电子邮箱 ..... 货币资金 其中:客户资金存款 结算备付金 其中:客户备付金 .........

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

理解MVC架构:Laravel框架的核心设计

# 1. 第1章 项目立项与概述 ## 1.1 动机 随着互联网的快速发展,Web应用的开发需求不断增加。为了提高开发效率、代码可维护性和团队协作效率,我们决定采用MVC架构来设计我们的Web应用。 ## 1.2 服务器状态 我们的服务器环境采用了LAMP(Linux + Apache + MySQL + PHP)架构,满足了我们Web应用开发的基本需求,但为了更好地支持MVC架构,我们将对服务器进行适当的配置和优化。 ## 1.3 项目立项 经过团队讨论和决定,决定采用Laravel框架来开发我们的Web应用,基于MVC架构进行设计和开发,为此做出了项目立项。 ## 1.4 项目概况

如何将HDFS上的文件读入到Hbase,用java

要将HDFS上的文件读入到HBase,可以使用Java编写MapReduce程序实现,以下是实现步骤: 1. 首先需要创建一个HBase表,可使用HBase Shell或Java API创建; 2. 编写MapReduce程序,其中Map阶段读取HDFS上的文件,将数据转换成Put对象,然后将Put对象写入到HBase表中; 3. 在MapReduce程序中设置HBase表名、列族名、列名等参数; 4. 在程序运行前,需要将HBase相关的jar包和配置文件加入到classpath中; 5. 最后提交MapReduce任务运行即可。 以下是示例代码: ``` Configuration

酒店餐饮部工作程序及标准(某酒店).doc

餐饮