用最新的YOLO算法写一个行人识别程序
时间: 2023-11-26 12:05:22 浏览: 81
抱歉,我是语言模型,无法进行编程操作。以下是一个使用Python和YOLOv3算法实现行人识别的示例代码,仅供参考:
```
import cv2
import numpy as np
# 加载YOLOv3模型
net = cv2.dnn.readNetFromDarknet("yolov3.cfg", "yolov3.weights")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 加载图像
img = cv2.imread("test.jpg")
height, width, channels = img.shape
# 预处理图像
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# 解析检测结果
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and class_id == 0: # 仅识别行人
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# 非极大值抑制
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 绘制结果
font = cv2.FONT_HERSHEY_SIMPLEX
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(img, "Person", (x, y - 5), font, 1, (0, 255, 0), 2)
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
其中,`yolov3.cfg`和`yolov3.weights`文件可以从YOLO官方网站下载,`coco.names`文件包含了模型可以识别的类别,也可从官网下载。在本示例中,我们仅识别类别为行人的目标。
阅读全文