逐行解释以下代码 import cv2 import numpy as np def cvtBackground(path,color): """ 功能:给证件照更换背景色(常用背景色红、白、蓝) 输入参数:path:照片路径 color:背景色 """ im=cv2.imread(path) im_hsv=cv2.cvtColor(im,cv2.COLOR_BGR2HSV) #BGR和HSV的转换使用 cv2.COLOR_BGR2HSV #aim=np.uint8([[im[0,0,:]]]) #hsv_aim=cv2.cvtColor(aim,cv2.COLOR_BGR2HSV) mask=cv2.inRange(im_hsv,np.array([im_hsv[0,0,0]-0.1,100,100]),np.array([im_hsv[0,0,0]+0.1,255,255])) #利用cv2.inRange函数设阈值,去除背景部分 mask1=mask #在lower_red~upper_red之间的值变成255 img_median = cv2.medianBlur(mask,5) #自己加,中值滤波,去除一些边缘噪点 mask2 = img_median mask_inv=cv2.bitwise_not(mask2) img1=cv2.bitwise_and(im,im,mask=mask_inv) #将人物抠出 bg=im.copy() rows,cols,channels=im.shape bg[:rows,:cols,:]=color img2=cv2.bitwise_and(bg,bg,mask=mask2) #将背景底板抠出 img=cv2.add(img1,img2) #改变图片比例 h, w = img.shape[:2] img5 = cv2.resize(img, (int(w * 1/3), int(h * 1/3)), interpolation=cv2.INTER_LINEAR) image={'im':im,'im_hsv':im_hsv,'mask':mask1,'img_median':img_median,'img':img5} cv2.startWindowThread() #加了这个后在图片窗口按Esc就可以关闭图片窗口 for key in image: cv2.namedWindow(key) cv2.imshow(key,image[key]) cv2.waitKey(0) cv2.destroyAllWindows() return image #test if __name__=='__main__': img=cvtBackground('zjz.jpeg',[55,55,55])
时间: 2023-12-08 08:04:08 浏览: 122
这段代码实现了给证件照更换背景色的功能,具体解释如下:
1. 首先导入需要用到的库:cv2 (OpenCV) 和 numpy。
2. 定义了一个名为 cvtBackground 的函数,其中 path 表示图片路径,color 表示要更换的背景颜色,可以是红、白或蓝。
3. 使用 cv2.imread 函数读取图片,并使用 cv2.COLOR_BGR2HSV 将 BGR 格式的图片转换为 HSV 格式。
4. 利用 cv2.inRange 函数设定阈值,去除背景部分,生成掩膜 mask。
5. 使用中值滤波函数 cv2.medianBlur 去除一些边缘噪点,并将处理后的掩膜保存为 mask2。
6. 利用 cv2.bitwise_not 函数生成 mask_inv,表示掩膜的反转。
7. 使用 cv2.bitwise_and 函数将人物抠出,保存为 img1。
8. 将底板 bg 生成与图片尺寸相同的背景,并将其赋值为 color。
9. 使用 cv2.bitwise_and 函数将背景底板抠出,保存为 img2。
10. 使用 cv2.add 函数将抠出的人物和背景合成一张图片,保存为 img。
11. 最后使用 cv2.resize 函数改变图片比例,将图片缩小至原图的1/3,并将处理后的各个变量以字典的形式保存到 image 中,便于后续查看处理效果。
12. 在主函数中调用 cvtBackground 函数并传入图片路径和要更换的背景颜色,将返回的 image 变量中的图像显示在窗口中。
相关问题
import cv2 import numpy as np def cvtBackground(path,color): """ 功能:给证件照更换背景色(常用背景色红、白、蓝) 输入参数:path:照片路径 color:背景色 """ im=cv2.imread(path) im_hsv=cv2.cvtColor(im,cv2.COLOR_BGR2HSV) #BGR和HSV的转换使用 cv2.COLOR_BGR2HSV #aim=np.uint8([[im[0,0,:]]]) #hsv_aim=cv2.cvtColor(aim,cv2.COLOR_BGR2HSV) mask=cv2.inRange(im_hsv,np.array([im_hsv[0,0,0]-0.1,100,100]),np.array([im_hsv[0,0,0]+0.1,255,255])) #利用cv2.inRange函数设阈值,去除背景部分 mask1=mask #在lower_red~upper_red之间的值变成255 img_median = cv2.medianBlur(mask,5) #自己加,中值滤波,去除一些边缘噪点 mask2 = img_median mask_inv=cv2.bitwise_not(mask2) img1=cv2.bitwise_and(im,im,mask=mask_inv) #将人物抠出 bg=im.copy() rows,cols,channels=im.shape bg[:rows,:cols,:]=color img2=cv2.bitwise_and(bg,bg,mask=mask2) #将背景底板抠出 img=cv2.add(img1,img2) #改变图片比例 h, w = img.shape[:2] img5 = cv2.resize(img, (int(w * 1/3), int(h * 1/3)), interpolation=cv2.INTER_LINEAR) image={'im':im,'im_hsv':im_hsv,'mask':mask1,'img_median':img_median,'img':img5} cv2.startWindowThread() #加了这个后在图片窗口按Esc就可以关闭图片窗口 for key in image: cv2.namedWindow(key) cv2.imshow(key,image[key]) cv2.waitKey(0) cv2.destroyAllWindows() return image #test if __name__=='__main__': img=cvtBackground('D:\picture\\rm.jpg',[255,255,255])这段代码涵盖的知识点
1. 导入模块(cv2和numpy)
2. 定义函数cvtBackground,实现证件照更换背景色的功能
3. 读取图片(cv2.imread)
4. 将BGR颜色空间转换为HSV颜色空间(cv2.cvtColor)
5. 设定阈值,去除背景部分(cv2.inRange)
6. 中值滤波,去除一些边缘噪点(cv2.medianBlur)
7. 图片取反(cv2.bitwise_not)
8. 与运算,将人物抠出(cv2.bitwise_and)
9. 创建背景底板,并将其与阈值后的照片进行与运算,将背景抠出(cv2.bitwise_and)
10. 将人物和背景合并(cv2.add)
11. 改变图片比例(cv2.resize)
12. 定义一个字典,包含处理过程中用到的所有图像
13. 创建窗口,并显示图像(cv2.namedWindow,cv2.imshow)
14. 等待按键按下,关闭窗口(cv2.waitKey,cv2.destroyAllWindows)
15. 在主函数中调用cvtBackground函数,测试代码功能
解释以下代码:import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns
这段代码的作用是导入Python数据分析和可视化的常用库,具体解释如下:
- `import pandas as pd`:导入pandas库,并将其命名为pd,以便在代码中使用更简短的名称来调用pandas的函数和方法。
- `import numpy as np`:导入numpy库,并将其命名为np,以便在代码中使用更简短的名称来调用numpy的函数和方法。
- `import matplotlib.pyplot as plt`:导入matplotlib库中的pyplot子库,并将其命名为plt,以便在代码中使用更简短的名称来调用matplotlib的可视化函数和方法。
- `%matplotlib inline`:这是一个Jupyter Notebook魔法命令,用于在Notebook中显示matplotlib图形。
- `import seaborn as sns`:导入seaborn库,它是一个基于matplotlib的数据可视化库,提供了更高级的统计图形和更美观的默认样式。同样,将其命名为sns以便在代码中使用更简短的名称来调用seaborn的函数和方法。
阅读全文