DES算法或者RAS算法 要求有算法描述及实例讲解
时间: 2023-12-06 13:37:44 浏览: 148
<<引用[1]>>中提到了非对称加密算法,其中最广为使用的就是RSA算法。RSA算法是一种基于大数因数分解的加密算法,它是一种公钥加密算法,即加密和解密使用不同的密钥。RSA算法的安全性基于大数分解的难度,即将一个大数分解成两个质数的乘积的难度。RSA算法的具体实现步骤如下:
1. 选择两个大质数p和q,计算它们的乘积n=p*q。
2. 计算欧拉函数φ(n)=(p-1)*(q-1)。
3. 选择一个整数e,1<e<φ(n),且e与φ(n)互质。
4. 计算d,使得d*e mod φ(n)=1。
5. 公钥为(n,e),私钥为(n,d)。
6. 加密时,将明文m用公钥加密成密文c,即c=m^e mod n。
7. 解密时,将密文c用私钥解密成明文m,即m=c^d mod n。
下面是一个使用Python实现RSA算法的例子:
```python
import random
# 判断一个数是否为质数
def is_prime(n):
if n <= 1:
return False
for i in range(2, int(n ** 0.5) + 1):
if n % i == 0:
return False
return True
# 生成一个大质数
def generate_prime():
while True:
p = random.randint(100, 1000)
if is_prime(p):
return p
# 计算两个数的最大公约数
def gcd(a, b):
if b == 0:
return a
else:
return gcd(b, a % b)
# 计算模反元素
def mod_inverse(a, m):
for i in range(1, m):
if (a * i) % m == 1:
return i
return None
# 生成公钥和私钥
def generate_key():
p = generate_prime()
q = generate_prime()
n = p * q
phi_n = (p - 1) * (q - 1)
while True:
e = random.randint(2, phi_n - 1)
if gcd(e, phi_n) == 1:
break
d = mod_inverse(e, phi_n)
return (n, e), (n, d)
# 加密
def encrypt(m, public_key):
n, e = public_key
c = pow(m, e, n)
return c
# 解密
def decrypt(c, private_key):
n, d = private_key
m = pow(c, d, n)
return m
# 测试
public_key, private_key = generate_key()
print("公钥:", public_key)
print("私钥:", private_key)
m = 123
c = encrypt(m, public_key)
print("密文:", c)
m = decrypt(c, private_key)
print("明文:", m)
```
<<引用>>中提到了DES算法,它是一种对称加密算法,即加密和解密使用相同的密钥。DES算法的具体实现步骤如下:
1. 将64位明文分成左右两个32位的部分L0和R0。
2. 将R0作为下一轮的L0。
3. 将R0通过扩展置换E扩展成48位,与密钥K1进行异或运算,得到48位的结果。
4. 将异或运算的结果分成8个6位的部分,每个部分作为S盒的输入,得到8个4位的输出。
5. 将8个4位的输出合并成32位的输出,通过P盒置换得到32位的结果。
6. 将32位的结果与L0进行异或运算,得到R1。
7. 重复2-6步,直到得到L16和R16。
8. 将L16和R16交换,得到64位的密文。
下面是一个使用Python实现DES算法的例子:
```python
# 初始置换IP
IP = [58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7]
# 逆初始置换IP^-1
IP_INV = [40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25]
# 扩展置换E
E = [32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1]
# 置换P
P = [16, 7, 20, 21, 29, 12, 28, 17,
1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9,
19, 13, 30, 6, 22, 11, 4, 25]
# S盒
S_BOX = [
# S1
[
[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
[0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
[4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
[15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13]
],
# S2
[
[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
[3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
[0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
[13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9]
],
# S3
[
[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
[13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
[13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
[1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12]
],
# S4
[
[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
[13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
[10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
[3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14]
],
# S5
[
[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
[14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
[4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
[11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3]
],
# S6
[
[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
[10
阅读全文